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Abstract

We are interested in the effects that multiple levers have on effort incentives in a

time-bundled contract. In particular, our setting provides multiple primary rewards for

high performing individuals and an alternative reward for poorly performing individu-

als. Standard assumptions about zero effort and eliminating deadlines are not feasible

in our setting because of the competitive nature of sports. We estimate a single-agent

dynamic structural model of hidden effort choice in the context of the National Football

League (NFL). The model builds upon current dynamic models in providing an identi-

fication technique for a hidden policy function using observed heterogeneity in a sports

setting. We find evidence that confirms general intuition about tanking: less talented

teams that have little chance of making the playoffs and more talented teams that are

likely to make the playoffs tend to exert lower effort. Counterfactual results show that

modifying the length of the contract, timing of rewards, and thresholds of the rewards

have ambiguous effects on effort incentives. Removing the alternative reward improves

effort, especially at lower states, but might be antithetical to the league’s objective.

Keywords: Time-bundled contracts, Effort incentives, deadline effects, effort distortion,

dynamic decision making, unobserved actions
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1 Introduction

A hotly debated topic among executives and officials in the major US sports leagues has

been the effect of the draft pick allocation mechanism on the effort exerted by teams. The

amateur draft is the primary way that teams obtain new talent each season, generating fan

and media interest especially in the NBA and NFL. Currently, all leagues implement some

sort of mechanism which gives the worst performing teams in a season the top picks in the

upcoming draft. These mechanisms are founded on the belief that the draft can redistribute

talent to improve the worst teams. Otherwise, the rich get richer since better performing

teams will drive more revenues and be able to afford higher quality talent. In the long run,

leagues fear that such path and state-dependent effects will cause interest in their sport to

deteriorate in certain markets.

However, the problem with draft mechanisms is that a single player may have a dispro-

portionate impact on the trajectory of a franchise. Occasionally, teams will intentionally lose

(”tank”) to secure a draft position to select a highly coveted amateur player. Leagues find

tanking problematic because tanking teams can be uncompetitive, ruining the quality of the

league’s product and the fan experience. The most famous example of tanking comes from

the NBA, where in the mid 2010s the Philadelphia 76ers intentionally traded away all of

their talent in order to collect top draft picks over multiple seasons. This behavior, famously

dubbed “The Process”, was very successful as the Sixers obtained three top draft picks over

a span of four years and eventually reached the playoffs just a few years later. Unfortunately,

“The Process” came with a glaring flaw; attendance at Sixers games was abysmally low and

media attention of the team was extremely negative. NBA league officials were displeased

with the optics surrounding “The Process” and forcibly removed Sixers General Manager

Sam Hinkie from his duties midway through one of the tanking seasons.

Given the interest from both fans and league officials in tanking, we study the tanking

problem in this paper through a single-agent dynamic structural model of discrete hidden

effort choice in the context of the National Football League (NFL). Teams choose effort levels
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which impacts their probability of winning and making the playoffs. These decisions are made

under uncertainty, since exerting effort does not guarantee a win and not exerting effort does

not mean the team will certainly lose. A model with hidden action should represent the true

effort allocation process of teams. Unlike Sam Hinkie and the 76ers, most teams do not

want to face retribution from fans or the league by openly admitting to tanking. One of

the goals of this paper is to measure the extent of tanking in sports and particularly, in the

NFL, where draft picks are allocated in reverse order of standings at the end of the season.

The measurement problem is important because it informs the importance of the mechanism

design problem in economics. Papers such as Banchio and Munro (2020) are more concerned

with the theoretical incentive-compatible draft mechanisms for the sports leagues and less

focused on documenting the empirical existence of tanking.

Our paper is related to the marketing literature through three avenues. First, we con-

tribute to the literature of dynamic structural models with hidden actions most frequently

seen in the sales-force compensation literature. We model the effort decision differently,

as a binary discrete choice rather than a continuous variable. This allows for a slightly

different identification strategy than the ones in the literature. Our paper also addresses

the issue of deceleration in time-bundled incentive contracts, like in rewards programs. In

a general time-bundled contract, deceleration is usually observed when individuals cannot

reach a specified threshold before the end of the contract. Our unique setting provides us

multiple levers to modify effort, not just a deadline and a reward. For example, our set-

ting naturally provides an alternative reward for the worst performing individuals. Having

various adjustable parameters of the contract gives the contract designer more flexibility in

shaping the effort profile and addressing deceleration. Lastly, we tackle the problem of prod-

uct/program design. Time-bundled contracts generally act as a compensation mechanism

to elicit effort. While our setting requires compensation, effort is a fundamental part of the

product in sports competition, providing sports leagues another reason to try and maximize

it.

3



Formally, our research question is concerned with studying the effects that multiple levers

in time-bundled incentive contracts have on eliciting effort. We frame the NFL regular

season as a time-bundled contract, and the parameters that define the league (number of

games played, number of playoff teams, draft mechanism, etc.) can be thought of as the

endogenous levers. We approach this question assuming that the league’s objective is to

maximize teams’ effort. We largely ignore the talent redistribution objective from the league’s

perspective, but its existence is recognized by teams and they gain utility from obtaining

a higher draft pick. To maximize teams’ effort, the league must set the parameters of the

season to optimally incentivize effort while minimizing effort deceleration. In other settings

studied in this literature, it is possible to linearize the time-bundled contract as a means of

minimizing deceleration. Often, this means removing any threshold which a reward is tied

to. However, it is difficult to do so in sports because of the exogenous nature of competition.

The competitive nature of sports necessitates the existence of a playoff or a championship

game. It also requires that determining the participants of a playoff cannot be arbitrary.

Therefore, our counterfactual simulations only change some parameters of the NFL regular

season, keeping intact the exogenous competitive structure which the league cannot feasibly

change.

Our results provide an empirical first step towards understanding the effects of multiple

levers in time-bundled contracts. We present descriptive evidence documenting the dynamic

effects that different states and talent levels have on the probability of winning. Our param-

eter estimates imply that an average team facing an average quality draft will exert effort

about 60% of the time in the first game of the season. Teams tend to almost always exert

effort in the last week of the season if they are on the threshold of making the playoffs or

obtaining a first-round bye. Weak teams exert effort about a quarter of the time if they are

eliminated from playoff contention and there are strong amateur prospects in the upcoming

draft. Conditional on making the playoffs but not able to reach any another thresholds,

teams exert effort about 40% of the time. Our first counterfactual tests the implementation
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of the new NFL league parameters in 2021-2022. This counterfactual changes the threshold

rules and the length of the season. We find that these changes ambiguously affect effort;

increasing the length of the season and allowing more playoff teams creates leeway in cer-

tain states of the world while incentivizing other states. Our second counterfactual replaces

the current draft mechanism with a purely random lottery, essentially eliminating the al-

ternative reward. Unsurprisingly, eliminating the reward for the worst performing teams

increases effort across the board. Nevertheless, this counterfactual does not address the

talent redistribution problem that the league faces. Our third counterfactual implements a

”tanking deadline”, shifting the realization of the alternative reward from the last period T

to an earlier period t < T . Predictably, poorly performing teams will further decrease effort

prior to the tanking deadline, but will increase their efforts post tanking deadline relative to

the status quo. Our results seem to follow general intuition and anecdotal evidence about

competitiveness and tanking in sports.

The paper proceeds as follows: section 2 dives deeper into the literature related to our

study. Section 3 gives background of our setting, summarizes our dataset, and provides

descriptive evidence supporting tanking. We introduce a general model of dynamic discrete

choice effort allocation in section 4. Section 5 details the functional form assumptions and

the estimation procedure of our model. Identification of our model is discussed in section 6.

Section 7 presents the parameter estimates of our model and the results of our counterfactual

simulations. We provide concluding remarks in section 8.

2 Literature Review

In this section we discuss other research relevant to our study. While the ”time-bundled

contract” has been studied in many empirical contexts, we first see this phrase used in a

behavioral economics paper by Aggarwal et al. (2020). The authors run a field experiment in

India attempting to incentivize exercise in diabetic patients. In one experimental group, the
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reward for reaching the exercise goal is ”bundled” over time; instead of receiving rewards

for every day they reach the goal, participants must reach the goal at least four or five

times a week in order to receive their reward. This experiment uncovers a crucial attribute

of the time-bundled contract: bimodality in the distribution of effort at the extremes. In

other words, subjects under the time-bundled contract were most likely to reach their daily

exercise goal either seven times a week or zero times a week. The time-bundled compensation

was just as effective as daily compensation in incentivizing exercise, but the time-bundled

contract comes at a lower cost to the policymaker. Our analysis differs because we care

about why the contract is creating the bimodality in effort, not how it is creating the most

efficient compensation scheme.

The study of time-bundled contracts also exists in the marketing and economics litera-

tures. Loyalty programs are one setting where these contracts are quite popular. Hartmann

and Viard (2008) study switching costs in a buy n get one free setting, where the thresh-

old n and a deadline creates switching costs for individuals short of the threshold. Kopalle

et al. (2012) find a “points pressure” created by deadlines in loyalty programs with different

rewards tiers. Another marketing setting where time-bundled contracts are studied is sales

force compensation. Chung et al. (2014) recover unobserved effort in a sales force setting,

using the nonlinearity induced by the quota-based compensation design for identification.

After obtaining estimates of sales force agents’ preferences, they simulate counterfactuals to

find optimal compensation plans. Our setting provides a unique challenge since the com-

petitive nature of sports makes smoothing out the nonlinearity in compensation impossible.

Studies such as the one done by Misra and Nair (2011) find optimal counterfactual policies

(and in this particular paper, compensation policies implemented in the field) by removing

compensation tied to thresholds such as quotas. Instead, we are restricted to using multiple

endogenously defined compensation levers, such as the draft pick mechanism, to shape effort.

We provide an identification technique of single agent dynamic discrete choice models

with hidden actions. The standard dynamic discrete choice models (cf. Rust 1987, Hotz and

6



Miller 1993, etc) all require that actions are observed in order to identify the state transition

densities. More recent papers have been concerned with unobserved state variables, such as

unobserved heterogeneity (Arcidiacono and Miller, 2011). The aforementioned sales force

literature deals with challenges in identifying hidden actions most similar to ours. Most

recently, Chung et al. (2019) identifies a hidden-action dynamic model of effort with beta-

delta present bias preferences. There are two key differences between our paper and the sales

force ones: first, we use a discrete effort choice rather than a continuous choice. Second, our

identification technique does not rely on an assumption about zero effort or maximum effort.

Because effort is a discrete choice, the unobserved state variable ensures that the probability

of exerting effort is never exactly zero or 100%. A zero-effort state is not feasible in our

setting because of the inherent nature of competition; professional athletes are not likely to

face situations where they would all give up. Instead, we rely on observing some measure of

true ability to identify the payoffs and cost of effort.

In a sense, we are related to the literature focused on the attributes of product design.

The most noticeable work in this field is the work on conjoint analysis (Green and Srinivasan,

1978) which helps firms set product attributes using a series of revealed preference designs.

Sports offers entertainment; its key attribute is the competition aspect. Therefore, leagues

will want to create a contract structure that can maximize competitive effort. We explore

how multiple levers in a time-bundled contract can affect effort, which inherently affects the

degree of competition in sports.

Finally, we are related to the literature on sports economics and the growing literature

on optimal draft allocation. Banchio and Munro (2020) propose a dynamic, incentive com-

patible draft allocation mechanism which they implement on data from NBA games. Their

mechanism satisfies the objective of allocating the best draft pick to the worst team while

addressing tanking. Lenten (2016) and Lenten et al. (2018) suggest that the team first elim-

inated from playoffs should receive the best pick in the draft. Our work is less concerned

with the efficient allocation of draft picks and is more focused on empirically documenting
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the existence of tanking.

3 Data and Descriptive Evidence

3.1 Setting

The National Football League (NFL) is the premier professional American football league

in the United States. There are 32 teams, split evenly into two conferences, the American

Football Conference and the National Football Conference. Each conference is further split

into four equal sized divisions - North, South, East, and West. Every team plays a 16-game

regular season schedule over a span of 17 weeks starting in late September. Through the

2019-2020 NFL season, a total of twelve teams qualified for the playoffs - six from each

conference, split into four division winners and two ”wild card” teams that had the best

remaining records. Starting in the 2020-2021 NFL season, the number of playoff teams

increased to 14, with each conference adding a third wild card team. Our data only runs

through the 2019-2020 NFL season, so we will proceed using the state of the league from

that year.

In each conference, there are three single-elimination playoff rounds: the wild card, divi-

sional, and conference rounds. The division winning teams with the two best regular season

records get a ”bye” in the wild card round and skip directly to the divisional round. The two

winners of the conference rounds then face off in a winner-take-all Super Bowl to determine

a champion of that season.

For teams that do not make the playoffs, their season ends after they have played their

sixteenth and final regular season game. In between seasons, teams are able to modify their

player personnel through a few means. The first is through the seven round NFL Draft,

where teams are able to select amateur prospects. The order of the NFL Draft is determined

by the inverse of the regular season record. That is, the team with the worst record will

select first. Another way of adding personnel is through free agency - players whose contracts
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have expired are able to sign contracts to play for other teams. Finally, teams can trade

their players for other players or draft picks. The ability to trade also exists in the regular

season up until the trade deadline (Week 8 of the NFL season).

3.2 Data

Our data consists of information about all NFL games played from the 2009-2010 through

the 2019-2020 NFL seasons. In this dataset, we observe all teams, scores, dates, locations,

weather and betting spreads of every game played. We pool the observations from these

11 regular seasons and treat each team-year combination as an individual team. In all,

there are 5632 observations of 352 team seasons. To construct αi from the data, we use a

Quarterback-adjusted ELO1 from FiveThirtyEight. Note that this isn’t a perfect measure

of ability; there tends to be stickiness in talent year to year, so the ELO prior to week 1 is

most reflective of the performance of the teams as of the last game they had played in the

prior season. Our construction also also implicitly assumes that the most talented team will

have a win probability of p(0) if they do not put in effort.

Additionally, we model observed draft strength ds as a number on the interval [0, 1].

To create this, we take projected prospect grades from ESPN’s archive of NFL drafts from

2009-2019 and convert the prospect grade to a number ds. We use a weighted calculation

of the best quarterback prospect rating and the best overall prospect rating in the draft.

The quarterback prospect rating is heavily weighted because according to almost all NFL

pundits, it is single most important position in the NFL. These draft ratings give us an

ex-ante view of what teams believe the quality of the draft will be.

3.3 Descriptive Evidence

Below, we provide some descriptive evidence that different effort levels are exerted by

different NFL teams. Figure 1 shows the probability of winning the next game in weeks 2, 5,

1A rating system used in chess (Wikipedia Link)
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12, and 17. Each colored line represents a different talent quartile given by FiveThirtyEight’s

NFL QB-adjusted ELO. The x−axis in each grid is the win percentage entering the week,

which should be interpreted as the state of the teams. In week 2 (top left), ELO quartile

seems to explain all of the variation in win percentages and the state of the team does

not appear to matter much. As soon as week 5, ELO becomes less predictive of the win

probability, and the state of the world gains much more explanatory power. At this point in

time, every team still has a mathematical chance of making the playoffs; even so, the talented

teams at lower states seem to have given up already. We see this upwards relationship

between current win percentage and probability of winning the next game continuing through

the season, including in week 12. In week 17, talented teams at higher states seem less likely

to win. The anecdotal evidence suggests that these teams have already clinched the playoffs

or a first-round playoff bye, giving them less incentive to put in effort. Teams are most likely

going to win if they have won between 40−60% of their games heading into week 17; i.e, the

group of teams most likely to win are the teams who have not been eliminated from playoff

contention in the last period. The main takeaway from these plots is that a dynamic context

is necessary to explain the patterns in the data. There seems to be a change in effort at

different time periods as well as in different states of the data. We introduce our a general

version of our dynamic model in the next section.

4 Model

There are n players, i ∈ I = {1, . . . , n}. Each player has an observed heterogeneity

parameter, αit which affects their individual performance. There are T − 1 periods where

effort can be invested. In these periods players can make a discrete effort decision eit ∈ {0, 1},

and an output wit(eit, αit) is realized conditional on effort and observed heterogeneity. Players

realize a final, state-contingent payoff at t = T .
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(a)

(b)

Figure 1: Win percentage by ELO quartile, weeks = 2, 5, 12, 17

11



4.1 State Variables and State Transitions

The state variables are the observed heterogeneity parameter, αit, and the accumulated

output through up until time t, Wit.

The output Wit ∈ W realized by time t follows the transition law:

Wit =


Wi,t−1 + wi,t−1, t > 1

0, t = 1

(1)

We also have observed heterogeneity, αit ∈ A. We assume it does not change over time, so

αit = αi. Overall, we write the state variable sit = (αi,Wit) ∈ A×W

4.2 Per-period and Last Period Utility

In every period but the last one, we specify a common per-period utility function. Let

sit = (αit,Wit) be our observed state variables. Player i in period t derives per period utility

based on the effort eit exerted:

U(eit|sit) = −C(eit) + εit(eit) (2)

The per-period utility is simply the cost of effort plus an error term εit(eit), which can be

interpreted as a state that is unobserved by the econometrician. We assume that these

error terms follow a Type-I extreme value distribution (T1EV) and is distributed i.i.d across

players and choices over time.

Next, we define the payoffs in period t = T . In this period, no effort choices are made.

Instead, the players simply realize their state and rewards:

UiT = βp · 1{WiT ≥ w̄}︸ ︷︷ ︸
Primary Reward

+ βd · D(WiT )︸ ︷︷ ︸
Alternative Reward

(3)
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Where D is a decreasing, convex function satisfying D′ ≤ 0, D′′ ≥ 0. w̄ is the threshold

of output that a player needs to reach in order to realize the primary reward. For now, we

assume that this is the same fixed number for each player. This assumption implies that

the effort exerted by one player does not affect the threshold needed achieve the reward for

another player. The assumption is feasible as long as there are minimal competition effects.

There are two rewards that are realized. The primary reward is the reward for players

who have crossed the threshold w̄. In the context of the NFL, this can be thought of as the

utility gained from making the playoffs. The alternative reward is decreasing in the state

WiT , so players who have performed worse will receive a larger alternative reward. This is

role of the NFL Draft, where the better draft picks (conditional on not making the playoffs)

are assigned in the reverse order of the number of games won.

In summary, we have the following ex-ante utility functions:

Uit(eit, sit) =


βp · 1{WiT > w̄}+ βdD(WiT ) t = T

−C(eit) + εit(eit) t < T

(4)

4.3 Optimal Actions

Given the per-period utility function in equation 4 and the state transitions above, we

can formulate a player’s problem as choosing the optimal effort to maximize the present-

discounted utility in each period. A player’s present-discounted utility under the optimal

effort policy can be represented by the value function

Ṽt(et, st; θ, µ) = max
et,et+1,...

E
[ T∑
τ=t

δτ−tUτ (eτ , sτ ; θ, µ)

]
(5)
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The player’s ex-ante (integrated) value function from choosing effort et in period t is:

Vt(st) =

∫
max
et

{
U(et, st) + δ

∑
st+1

Vt+1(st+1)ft(st+1|et, st)
}
dGε(εt) (6)

Where ft(st+1|et, st) is a column vector of transition probabilities. Note that the value

functions and transition probabilities must be indexed by t because we are in a finite horizon

setting. Let u(·) be the flow utility net the epsilon shock, U(·) − εt. Our corresponding

choice-specific value function is:

vt(et, st) = ut(et, st) + δ
∑
st+1

Vt+1(st+1)ft(st+1|et, st) (7)

The optimal effort policy is:

et = e(st) =


1 vt(1, st; θ, µ) > vt(0, st; θ, µ)

0 else

which maximizes the present-discounted utility conditional on the current state variables.

5 Estimation

Our goal is to recover the effort profile Pt(e = 1|st), which is akin to recovering the

conditional choice probability in a dynamic discrete choice problem. We use a nested fixed

point approach similar to Rust (1987) where in the inner algorithm we take θ and µ as given

and compute the value function using backwards induction. In the outer algorithm we search

over the parameter space to maximize the log likelihood.

To begin, we adapt the general model in Section 4 to our specific application involving

the NFL. There are n = 32 teams and T = 17 periods. There are G = T −1 = 16 games in a

season, and a final period where the playoff and the draft rewards are realized. In each period,
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effort is chosen before the realization of the outcome of the game. Effort can be thought

of as a collective team effort: from a General Manager’s (GM), effort is spent constructing

the team, actively scouting players, or seeking out trades. GMs can mandate that coaches

make certain personnel decisions, like giving more playing time to less experienced players.

Coaches spend effort preparing gameplans for the next opponent, watching film, and running

practice. Players exert effort watching film, practicing, and playing in the actual football

game. One must note that tanking is not necessarily incentive compatible to players and

coaches; if a player performs poorly, they can get benched. Additionally, tanking potentially

allows the team to replace the poorly performing player with a more talented replacement

from the draft. Coaches can be fired if the team performs poorly.

Define Wit as the total number of wins that a team has heading into period t. Let wit be

the indicator that a team wins in period t. It follows the distribution:

wit ∼ Binom(1, p(q(eit, αit;µ))) (8)

Where q(·) : E × A → R maps the effort choice and individual heterogeneity to a some

quality score in R. We assume that q(·) is additively separable in eit and αit:

q(·) = µ · (αi, eit)

= (µ1, µ2) · (αi, eit)

p(·) : R → [0, 1] is a strictly increasing function that maps the quality score to the win

probability of each game; in our estimation, we use p(·) = Φ(·), the standard normal CDF.

µ is a vector of parameters that indexes q(·). We obtain αi by transforming the ELO of a

team at the beginning of time period t to a number on [−1, 0]. These assumptions on αi

and p(·) impose a 50% win probability for q = 0 teams. In particular, the win rate of the
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most talented team α = 0 is normalized to 50% if they do not exert effort2. Note that the

probability of winning depends on two factors: the innate ability of the team and the effort

choice.

We assume the functional form of C(·):

C(eit) = βceit

where βc > 0 denotes the team’s cost of exerting effort.

The timing is as follows: at the beginning of time t = 1, each team realizes its talent, αi.

Given the parameters θ and µ, the team computes its value function, realizes an independent

shock εi1(ei1) ∼ T1EV for each effort choice, and then chooses its effort ei1 ∈ {0, 1}. After

choosing ei1, the team realizes wins wi1 according to the distribution given in equation 8.

We then advance to the next period where the team again computes its value function and

makes an optimal effort choice.

5.1 Inner algorithm

We restate some of the assumptions3 mentioned earlier and introduce new ones. We

assume that teams are risk neutral, so that γ = 0. Furthermore, we specify a functional

form for the draft utility function, D(WiT ):

D(WiT |ds) =


ds · (G−WiT )2 WiT < w̄

ds · (G− w̄)2 WiT >= w̄

(9)

The function is conditional on ds, which is the strength of the draft class observed in the

data. Within a season, ds is assumed to be constant. We obtain variation on the draft

2Empirically, this may not be a bad assumption. If we look at the regular season records of teams which
won the Super Bowl the year prior, the worst performing teams still obtained 7 wins in 16 games. See
Appendix for details

3Aguirregabiria and Mira (2010) gives a list of common assumptions for the single agent dynamic model
that we use if not mentioned here. Noticeably, we assume the two conditional independence assumptions.
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payoff across seasons. This functional form is convex in wins to reflect the idea that the

earlier draft picks are more valuable because more talented amateur prospects are available

to be selected. After crossing the playoff threshold w̄, the draft payoff is constant. This is

in accordance with NFL policy; conditional on making the playoffs, draft picks are assigned

by a team’s performance in the playoffs and not in the regular season.

We assume that the threshold for making the playoffs is w̄ = 10 wins. This is a realistic

threshold that teams aim for, as 90% of the teams since the playoff expansion in 1990

have reached the playoffs conditional on achieving exactly 10 wins4. Lastly, we add a third

reward for the first round playoff bye. This reward is achieved if a team reaches 13 or

more wins5. Anecdotally, teams do not tend to rest their players once they qualify for the

playoffs. Instead, they often compete until they have clinched a first round bye or cannot

mathematically achieve a bye. These assumptions modify the per period utility in 2 and 4

to be:

Uit(eit, sit) =


βp · 1{Wit > 10}+ βb · 1{Wit > 13}+ βdD(Wit) t = T

−βc ∗ eit + εit(eit) t < T

(10)

Under the assumption that the unobserved state variable is distributed T1EV, the integrated

value function in equation 6 has the closed form:

Vt(st; θ, µ) = log

( 1∑
e=0

exp

(
u(et, st) + δ

∑
st+1

Vt+1(st+1)ft(st+1|et, st)
))

(11)

We can solve for V1, V2, . . . , VT using backwards induction, and then compute the condi-

4Historical data from pro-football-reference.com
5Empirical data shows that this cutoff is usually between 12 and 14 wins
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tional choice probability of exerting effort using the conditional logit formula:

Pt(e = 1|st, θ, µ) =
exp(vt(1, st))

exp(vt(0, st)) + exp(vt(1, st))
(12)

5.2 Outer algorithm

Given the computation of the conditional choice probabilities Pit(·) at every t, we can

the result into a likelihood function. The likelihood of observing wins ŵt in period t for

individual i is:

Lit(θ, µ) =
∑
e

Prt(eit|θ)ft(ŵt|eit, µ) =
∑
e

Prt(eit, ŵt|θ, µ) (13)

Li =
T∏
t=1

Lit (14)

log(L) =
N∑
i=1

log(Li) (15)

where f(·) is the probability mass function of a binomial distribution as described in equation

8. We then use an optimization routine to search for the (θ, µ) that maximizes this likelihood

function.

6 Identification

We observe the following data:{Wit, wit, Git, αit, dst, : i = 1, . . . , N ; t = 1, 2}. Unlike

classic models of dynamic discrete choice, we do not observe the effort choice; we must infer

the probability of putting in effort given the observed number of wins in the period, wit. The

formal identification argument is tricky and has not been fully fleshed out before the deadline

of this paper. The main challenge is untangling the benefits of exerting effort, µ2, from the

cost of exerting effort, βc. Ideally, we need to find an exclusion restriction that shifts one

of either the cost or the benefit of effort without shifting the other one. We proceed with a
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brief discussion about the intuition surrounding the identification of the parameters.

We need to be able to identify the following parameters: θ = (βp, βd, βc, βb), µ = (µ1, µ2).

To do so, we rely on the following identifying assumption:

Assumption 1 The probability of winning, Pi(st), does not depend on the observable state

Wt when we condition on αt, et. Wt affects the probability only through the choice of effort

et.

We begin by first considering the identification of µ1, the parameter that affects the win

probability through αi. We are able to identify this parameter by focusing on teams at

states W ≥ b̄ = 13. Assumption 1 allows us to ignore Wt and focus on how effort et would

be chosen in these states. These teams have exhausted all incentives; there are no more

thresholds to reach and the draft reward crucially does not depend on regular season record

conditional on making the playoffs. Hence, all teams in these states should have the same

effort incentives, so variation in win percentage such teams in the data must be attributed

to difference in talent, α. Analyzing the win probabilities of teams in states W ≥ b̄ while

varying α gives us identification of µ1.

We can separately identify the effect of effort on winning, µ2, and the cost of effort, βc.

Doing so relies on the assumption that p(·) is not linear in µ2; the effect of exerting effort

on win probability is not constant but relies on α and µ1. If we had an exclusion restriction,

we can isolate each effect individually as well.

The difference in behavior for teams that have a chance at making the playoffs versus

teams that are mathematically eliminated from the playoffs can help us recover βp, the utility

of making the playoffs. A similar argument allows us to identify βb, using the threshold of

the playoff bye. We can separately identify βd because the draft utility acts almost as a

second cost of effort. Teams at lower win states will face a higher marginal cost of effort

because of the convex nature of D(·). Year-to-year variation in the quality of the draft alters

the payoff, so we can also compare performance of teams with low wins and similar quality

across seasons to identify βd. We end up assuming risk neutrality for all teams, so γ = 0.
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Lastly, we cannot identify the discount factor so we assume that δ = 0.98.

7 Results

7.1 NFL Season Estimation Results

Table 1 reports the parameter estimates of our model estimated on the NFL regular

season data:

Win function p(·)
Normal CDF

βp 18.85***
[1.75, 56.11]

βb 52.27***
[3.42, 684.2]

βd 0.07***
[0.02, 0.35]

βc 0.48
[−0.70, 1.09]

µ1 0.82***
[0.68, 2.11]

µ2 0.73***
[0.59, 2.92]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Bootstrap SEs clustered at the season level.

Table 1: Estimated parameters, NFL 2009-2019 regular seasons

At first glance, the parameter estimates do not seem to make much intuitive sense.

Why would the utility achieved from a playoff bye be three times as large as the utility

achieved from making the playoffs? Why is the cost of effort not statistically significant

when considering the 95% confidence interval? Some context about the setting may help
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(a)

(b)

Figure 2: Implied probability of exerting effort, NFL 2009-2019
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provide some intuition. For the top performing teams, simply making the playoffs is usually

not their only goal; many have aspirations to win the Super Bowl. A first round playoff bye

is valuable - it is equivalent to winning a playoff game since the team advances to the next

round of the playoffs without needing to play an opponent. A bye allows teams more time

to rest up and prepare for whomever their next opponent will be. Therefore, we do not see

the absolute best teams rest many starters or shirk on effort even when they have already

locked up a playoff birth. The large values of βb and, to an extent, βp are a result of effort

almost always expended when a playoff birth or a playoff bye are in reach. The insignificance

of the cost of effort parameter is a possible result of the components of effort discussed in

section 5. While it may be in the best interests of the front office and GM to tank, coaches

and players are fighting for their jobs and may not choose to tank.

Figure 2 displays the effort profile given different combinations of ds and α. The top figure

shows the effort profile in time periods t = 6, 12, and 16. In each row, we compute the effort

profile while holding observed talent fixed and increasing the strength of the draft prospects

from left to right. Within each column, we hold the draft strength fixed while increasing the

observed talent from bottom to top. Within each grid, the x-axis represents the number of

wins W that each team has entering period t; the y-axis represents the probability that they

will exert effort that period. The bottom figure is a heatmap that shows the effort profile

across all weeks and all possible win states. Each row and column in the bottom figure has

the same interpretation as in the top figure. Within a grid, the 45 degree line represents an

undefeated team in a period t. To convert between the two figures, consider the following

example: The blue lines in a grid in the top figure correspond to the rightmost columns in

a grid in the bottom figure. The green lines correspond to the 12th columns from the left in

each grid, and so forth.

At a lower time period such as t = 6, the effort profiles follow a shape that seems

intuitive. The probability of exerting effort seems to be monotonically increasing in the win

state, almost matching the shape of the descriptive win-probability plots in Figure 1. More
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talented teams become more likely to exert effort faster as their state improves. Amongst

3-win teams, a team with high talent α = −0.1 exerts effort almost 90 percent of the time

while a team with low talent α = −0.9 will barely exert effort 40 percent of the time. At

t = 6, no teams have mathematically been eliminated from the playoffs, so we would expect

effort to be increasing monotonically. At a later period in time, such as t = 12, we start

to see lapses in the monotonicity of effort. Highly talented teams exert effort more when

they have six wins compared to when they have seven wins. The probability of exerting

effort declines across all talent and draft levels when we reach undefeated teams (team with

11-wins), although the decline is much greater for talented teams. These teams have already

made the playoffs, and only need to win 2 of their remaining 5 games to achieve a first round

bye. Teams do not exert as much effort when they have earned some leeway for themselves.

In the final period where effort can be exerted t = 16, we see that teams one win below the

thresholds will exert effort with probability close to 1, while everyone else tends to not exert

effort. Using the parameters estimated in Table 1, we assess the our model fit in Figure 3

by simulating outcomes. Our model slightly underperforms the lower tail of the data, but

is able to capture the bimodality of the data. We perfectly capture the spike at 7 wins, and

slightly overpredict the spike at 10 wins (which is like an artifact of the threshold set at

w̄ = 10). As a final check, we use our model parameters to simulate the outcomes in the

2009-2019 NFL seasons 100 times. On average, a team will win 8.01 games per year, which

is just a sliver larger than the theoretical maximum of 8 games.6 Thus, we have confidence

that our model is not highly miscalibrated and gives reasonable predictions.

Overall, we document the existence of tanking in the NFL. While effort isn’t always

exerted, the propensity to exert effort is much lower when teams are eliminated from playoffs

than in any other state. Less talented teams give up faster; compared to more talented teams,

they exert much less effort in lower win states that are not mathematically eliminated. Low

skill teams do not fully put in effort until their prospectus of reaching the threshold is quite

6Since each team plays 16 head-to-head games a year and there is one winner per game, in the absence
of ties the average number of games won by any team will be 8.
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Figure 3: Predicted vs Actual Wins

good. High skill teams are also different from low skill teams because they are more likely

to shirk on effort at higher states. Their raw talent can carry them to the next threshold

reward without exerting a lot of effort.

7.2 Counterfactual Results

We run three counterfactuals, all of which adjust different parameters of the NFL season.

The first change mirrors the rules implemented for the 2021-2022 NFL season. The number

of games played increases to 17 and two additional teams can make the playoffs. Implement-

ing this counterfactual is interesting because contract lengths and thresholds are changing.

Increasing the length of the season allows for more uncertainty to be resolved before crucial

effort decisions need to be made. Allowing additional teams into the playoffs may incentivize

higher effort.

The second counterfactual we run replaces the current draft allocation mechanism by ran-
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domly assigning a draft pick to every team, regardless of their season record. We implement

this by making the draft allocation function D(W ) equal to a constant for every realization

of the final number of wins, W . This counterfactual demonstrates the importance of the

reward structure in linking together the individual decisions of teams across time periods.

Furthermore, it provides insight into an interesting sports problem that has plagued league

commissioners recently.

The third counterfactual is similar to the second, but instead of randomly assigning draft

picks we determine the draft order at some deadline t < T , changing the timing of the

alternative reward. This is the recommendation of Banchio and Munro (2020), so it will be

interesting to see if this policy change elicits a more ”optimal” effort profile. Specifically, we

choose t = 6 as one of the ”tanking deadlines” because under our model, every team can still

qualify for the playoffs. We also choose t = 10 as an alternative deadline because at t = 6,

not enough uncertainty might have been resolved to determine if the lowest win state teams

are actually the worst teams.

7.2.1 Proposed Future NFL Changes

We first simulate the scenario where the proposed changes for the 2021-2022 NFL season

and beyond are implemented. To recap the changes, the number of regular season games

increases from 16 to 17 and the number of playoff teams increases from 12 to 14. Increasing

the number of playoff games decreases the number of teams receiving first round byes from

4 to 2.

To model the 2021-2022 proposed changes in our counterfactual, we increase the number

of games played in a season, G, to 17. Since we need a final period to realize end-of-season

payoffs, we increase T to 18. We leave the threshold number of wins to make the playoffs, w̄,

at 10. Since there is an additional regular season game, there are more opportunities to reach

10 wins and more teams will do it. Increasing the number of playoff teams also decreases

the number of first round byes, so the threshold for a playoff bye must be more competitive.
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Hence, we raise the threshold to obtain a playoff bye from 13 to 14 wins. We believe that

the number of additional teams that will reach 10 wins under this counterfactual scenario

will reflect the updated playoff structure.

Figure 4: Counterfactual effort profile: Implementing 2021-2022 policy changes, change in
effort

The effects of the 2021-2022 regular season changes on the effort profile are displayed

in Figure 4.7 We see that increasing the number of games and playoff teams increases the

probability of effort being exerted when teams have won half of their games. Effort decreases

when teams have won a little more than half of their games, reflecting the additional leeway

that a 17th game provides in making the playoffs. Effort also tends to increase at very high

win states in later time periods; it is likely that these changes are a results of the increase

in the playoff bye threshold. These patterns hold regardless of the number of games played

and the draft strength. Interestingly, the change in season structure seem to have varying

impact on teams with different α. Less talented teams seem to increase their effort at t = 1,

7We do not display changes in effort at t = T ′ = 17, since we only see a shifted copy of the t = 16
heatmap columns from Figure 2
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while more talented teams decrease their effort.

Because our model is single-agent and lacks competition effects, we need to check if, on

average, we predict a feasible number of wins. We do so by running 100 simulations using our

estimated parameters and the counterfactual changes. We then obtain the average number

of wins that our model predicts for any team. In a 17 game season, the average number of

games won per team cannot realistically exceed 8.5, since for every winner of a game there

is a loser8. Our model predicts an average of 8.47 wins per team, a realistic average.

7.2.2 Randomized Draft Order

We next visit the scenario where draft order is randomized. In order to conduct this

counterfactual, we need to set D(Wi3) equal to some constant. Given the functional form

specification for D(·) is section 5.1, we can set D(Wi3) = ED(Wi3),∀ Wi3. Note that the

expectation of the function is not equivalent to the function value of the expected number

of wins because of the convex nature of the draft function. Holding everything else fixed,

this situation results in the change-in-effort profile displayed in Figure 5.

We see a large increase in the probability of exerting effort at the lower win states, and

almost no change in probability of exerting effort in the higher win states. No teams decease

their probability of exerting effort. It appears as if teams contending for the playoffs do not

let the alternative reward affect their decision making. The largest increase in the probability

of exerting effort is around 10%, which occurs in the lower win-states at t = T . Stronger

drafts lead to larger increases. This is unsurprising because the payoff for performing poorly

is much lower in the counterfactual.

Simulations predict that the teams will win on average about 8.17 out of 16 games in

a season. The biggest gains in predicted wins are among teams with the lowest α. For

example, the 2009 Detroit Lions (α = −1) win on average 4.8 games in the simulation under

current NFL rules, whereas they win on average 5.0 games in this counterfactual simulation.

8We can have slightly fewer than 8.5 wins because of ties
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Figure 5: Counterfactual effort profile: Random Draft Order, change in effort

As discussed previously, the average number of wins of all teams in a season can not exceed

realistically 8. So while effort levels may indeed increase with a randomized draft order

policy, they may not increase to the extent that the model predicts since we are missing the

competition element that a dynamic games model would bring.

7.2.3 Determining Draft Order Midseason

Our last counterfactual scenario implements the recommendation from Banchio and

Munro (2020) to determine the draft order using the standings of teams at a time t < T . In

particular, they recommend determining the draft order before any teams are mathemati-

cally eliminated from playoff contention. Our assumption of setting the playoff threshold at

10 wins means the latest we can set the playoff determination deadline is week 6. However,

six games played seems like too small of a sample to determine if teams are truly bad or if

they are simply unlucky. We proceed with conducting the counterfactual at two levels - a

“tanking deadline” at t = 6 and another at t = 10.
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Figure 6: Counterfactual effort profile: Draft order determined week 6

Figure 7: Counterfactual effort profile: Draft order determined week 10
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Figure 6 shows the change in effort heatmap when the tanking deadline is set at t = 6

and Figure 7 shows the same thing for t = 10. We obtain predictable deadline effects

regardless of when it is set - effort decreases in lower states prior to the tanking deadline,

but increases afterwards. Draft strength affects the amount of bite that the deadline has;

for weaker drafts, the change in effort is very small compared to the change for a stronger

draft. Interestingly, the tanking deadline increases the effort of lower skill teams at high

win states before both deadlines. These teams would have otherwise decreased their effort

because they were unlikely to win enough games to make the playoffs. However, the early

tanking deadline makes it more worthwhile to pursue the playoffs rather than a better draft

pick.

For the t = 6 deadline, the largest decrease in probability of exerting effort is around

20%. The magnitude of decreasing effort is larger than the magnitude of increasing effort,

although effort increases in more states. Our simulations predict an average of 7.98 wins per

team. For t = 10, the decrease in effort is milder, but the decreasing effort occurs in more

states. Simulations predict 8.01 average wins per team.

7.3 Discussion

Our three counterfactuals explored the following changes to the NFL season structure:

1. Increased the number of periods and increased one of the reward thresholds

2. Effectively removed the alternative reward

3. Changed the timing of the alternative reward

Under the objective where the league wants to maximize effort and allow for talent redis-

tribution, it appears as if the status quo policy is somewhat optimal. These counterfactual

results mainly demonstrated that the league can only shape the effort of teams in a limited

manner. If the league is willing to trade off effort at certain state-time period combinations

- for example, if they want more competitive games among bad teams late into the season -
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then some of our proposed counterfactual policies can be adopted. If the NFL doesn’t mind

the potential media optics of a “tanking deadline”, or the negative effort effects it would bring

before the deadline, then adopting the third counterfactual policy would increase effort post

deadline for struggling teams.

The first counterfactual policy of increasing the number of time periods and the reward

threshold somewhat achieves the goal of incentivizing worse-performing teams to try harder.

In the real world, we have seen such a counterfactual policy been implemented by airline

rewards programs. Because travel was restricted for most of 2020 by the Coronavirus pan-

demic, many airlines extended the timeframe for points and status accumulation to the end

of 2021. Our counterfactual predicts that changing the length of the season T and making

the playoff reward easier to achieve will lead to mixed changes in effort. On one hand, the

additional playoff spot in conjunction with a longer season incentivizes unlucky teams to

keep putting in effort since there is more time and margin of error to recover from bad luck

early in the season. On the other hand, the changes give additional leeway to teams on pace

to make the playoffs, which decreases their effort. Additionally, these changes do nothing to

address the absolute worst performing teams for whom tanking is still optimal.

If the league did not care about talent redistribution, then they could implement our

second counterfactual policy: replace the current draft mechanism with a completely random

draft lottery. In this scenario, the league would essentially be removing the alternative

reward and only leaving the primary rewards of playoffs and byes. Because effort is costly,

the increase in effort is not drastic; at best, teams may increase their propensity to try

by 15%. Removing the alternative reward actually creates a uniform effort profile among

teams mathematically eliminated from the primary rewards (playoffs). This counterfactual

teaches us that an alternative reward almost always decreases and distorts effort whenever

the primary reward has not been achieved. In a non-sports example, if a sales-force agency

wanted to implement a training program for just their worst-performing salespeople, our

counterfactual tells them to expect even more shirking by the poor performers than in the
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status quo.

8 Conclusion

In this paper, we have studied the effects of multiple levers on effort in a time-bundled

contract. Previous literature has documented i.) effort deceleration in the presence of

a deadline and a threshold reward and ii.) the deceleration mostly goes away when the

threshold is removed. Our sports setting precludes us from removing any thresholds, but

provides more levers to alter effort behavior. We simulate three counterfactual worlds; the

first changes the number of time periods and the threshold for one of the primary rewards.

The effect on effort is ambiguous due to simultaneous incentivizing and disincentivizing

effects acting on different states of the world. Our second counterfactual eliminates the

alternative reward that awards individuals in low states. Predictably, effort increases in

every state and especially in the lower states. The final counterfactual alters the timing

of the alternative reward, resulting in yet another ambiguous effect on effort. Effort pre-

deadline declines for poor performing teams but increases for high performing teams. Effort

post-deadline increases across the board. Overall, our work provides possible alternative

contract structures for a contract designer with our specific constraints and very particular

effort shifts in mind.

We have taken quite a few liberties with respect to assumptions in this paper. Most

noticeably, we model our problem as a single agent dynamic discrete choice problem and

do not directly allow for competitive effects in a sports setting. Further work can be done

in modelling our setting as a dynamic game; such a direction will face similar challenges in

identifying the latent action and dealing with a large, sparse state space. Furthermore, we

do not take a strong stance on the objective of the league, making it difficult to determine

what an optimal time-bundled contract would be. Additional work can be done to address

what an “optimal” contract would be. Ideally, this would include studying possible effects
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on a demand side, such as TV viewership or game attendance.
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9 Appendix

9.1 Empirical Evidence for Assumptions

9.1.1 Assumption about quality score 0 teams

We assume that the most talented team α = 0 exerting effort e = 0 will win 50% of

their games. To empirically test this, we look at the outcomes of all Super Bowl winners the

season after they win the championship. The idea is that talent is sticky in the NFL, so the

previous Super Bowl winners should still be highly talented in the following season. Out of

the last 20 Super Bowl Winners, only one has finished the following season with worse than

a 8− 8 record (2003-2004 Tampa Bay Buccaneers) and even then, they finished only 1 win

short of winning 50% of their games. If anything, this evidence shows that lazy but very

talented teams might have a winning probability of more than 50%.

9.2 Some Identification Arguments

9.2.1 Setup

Utility functions

Uit(eit,Wit) = −βceit + εit(eit) (16)

UiT = βp · 1{WiT ≥ w̄}︸ ︷︷ ︸
Playoffs reward

+ βd · D(WiT )︸ ︷︷ ︸
Draft reward

(17)

Win distrubution:

wit ∼ Binom(Git, p(q(eit, αi;µ))) (18)

For the identification argument, assume that Git = 1 for every i, t. The above expression is

therefore also a a Bernoulli distribution with parameter p(q(·)). The function q(·) is a linear
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Super Bowl Winning Team Next Year’s Record Change in Wins (%)

XII Cowboys 12-4 0* (-.107)
XIII Steelers 12-4 -2 (-.125)
XIV Steelers 9-7 -3 (-.188)
XV Raiders 7-9 -4 (-.250)
XVI 49ers 3-6 -10** (-.479)
XVII Redskins 14-2 +6** (-.014)
XVIII Raiders 11-5 -1 (-.063)
XIX 49ers 10-6 -5 (-.313)
XX Bears 14-2 -1 (-.063)
XXI Giants 6-9 -8*** (-.475)
XXII Redskins 7-9 -4*** (-.296)
XXIII 49ers 14-2 +4 (+.250)
XXIV 49ers 14-2 0
XXV Giants 8-8 -5 (-.313)
XXVI Redskins 9-7 -5 (-.313)
XXVII Cowboys 12-4 -1 (-.063)
XXVIII Cowboys 12-4 0
XXIX 49ers 11-5 -2 (-.125)
XXX Cowboys 10-6 -2 (-.125)
XXXI Packers 13-3 0
XXXII Broncos 14-2 +2 (+.125)
XXXIII Broncos 6-10 -8 (-.500)
XXXIV Rams 10-6 -3 (-.188)
XXXV Ravens 10-6 -2 (-.125)
XXXVI Patriots 9-7 -2 (-.125)
XXXVII Bucs 7-9 -5 (-.313)
XXXVIII Patriots 14-2 0
XXXIX Patriots 10-6 -4 (-.250)
XL Steelers 8-8 -3 (-.188)
XLI Colts 13-3 +1 (+.063)
XLII Giants 12-4 +2 (+.125)
XLIII Steelers 9-7 -3 (-.188)
XLIV Saints 11-5 -2 (-.125)
XLV Packers 15-1 +5 (+.313)
XLVI Giants 9-7 0
XLVII Ravens 8-8 -2 (-.125)
XLVIII Seahawks 12-4 -1 (-.063)
XLIX Patriots 12-4 0
L Broncos 9-7 -3 (-.188)
LI Patriots 13-3 -1 (-.063)
LII Eagles 9-7 -4 (-.250)
LIII Patriots 12-4 +1 (+.063)

Table 2: Post Super Bowl Performance
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combination of e and α:

q(e, α;µ) = (α, e) · (µ1, µ2)

we also assume that p(·) is invertible and known. We have the following parameters to

identify:

µ1, µ2, βp, βc, βd

assuming that the teams are risk neutral.

In summary, the following assumptions are made:

1. The probability of winning, Pi(wt), does not depend on the observable state Wt when

we condition on αt, et. Wt affects the probability only throuagh the choice of effort et.

2. p(·) is increasing in its argument and invertible

3. q(·) is a linear combination of (α, e)

4. Teams are risk neutral (γ = 0)

We can think of the µ parameters as the ones that affect utility through the probability

of winning, and the β parameters as the ones that affect utility directly. Using knowledge of

our setting, we can specify some constraints for our parameters:

• Putting in effort should increase the probability of winning, so µ2 > 0. Howver, no

team should be guaranteed to win if they put in effort. Therefore, µ2 < p−1(1)

• More talented teams should be more likely to win, µ1 > 0. Similar to above, no team

should be guaranteed to win if they are the most talented. So µ1 < p−1(1)

• Playoffs and drafts should matter βp, βd > 0

• There should no temporary benefits to effort, βc ≥ 0
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9.2.2 Non-parametric identification

We observe E[w|s], which is the marginal probability of winning. We do not observe

effort. Because effort is discrete, this expression is equivalent to:

E[w|s] = E[w|e = 1, s] · Pr(e = 1|s) + E[w|e = 0, s] · Pr(e = 0|s) (19)

If we assume that there exists a state such that Pr(e = 1|s) = 1, that is, effort is exerted

with certainty, then E[w|e = 1, s] can be identified. If E[W |e, s] takes the same functional

form regardless of e, then it is identified.

Because of the binary nature of the effort choices, we only have Pr(e = 1|s) to identify,

as Pr(e = 0|s) = 1− Pr(e = 1|s). We can easily identify this after recovering E[w|e, s]; we

use observations where the effort choice will not be e = 1 with certainty.

9.2.3 Parametric Identification

Equations at T − 1

Consider the following argument for the identification at the last period t = T − 1: we have

the following choice specific value functions (dropping i, t indices for expositional clarity):

v(e, s) = u(e, s) + δ[UT (s0) ∗ P (w = 0) + UT (s1) ∗ P (w = 1)]

= −βce+ δ[UT (s0) ∗ (1− E[w|e, s]) + UT (s1) ∗ E[w|e, s]]

where s0 is the state in the final period if the team does not win in t = T − 1 and s1 if the

team does win. We can group the E[w|e, s] arguments and rewrite the CSVF:

v(e, s) = κE[w|e, s]− βce+ δUT (s0) (20)

κ = δ[UT (s1)− UT (s0)] (21)
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The conditional choice probability is:

Pr(e = 1|s) =
exp(v(1, s))

exp(v(0, s)) + exp(v(1, s))

=
exp(κE[w|1, s]− βc + δUT (s0))

exp(κE[w|0, s] + δUT (s0)) + exp(κE[w|1, s]− βc + δUT (s0))

=
exp(κE[w|1, s]− βc)

exp(κE[w|0, s]) + exp(κE[w|1, s]− βc)

From above, we observe E[w|s]:

E[w|s] = E[w|e = 1, s] · Pr(e = 1|s) + E[w|e = 0, s] · Pr(e = 0|s) (22)

Substituting the first equation above into the observed win probability equation, we

obtain:

E[w|s] = E[w|1, s] exp(κE[w|1, s]− βc)
exp(κE[w|0, s]) + exp(κE[w|1, s]− βc)

+

E[w|0, s]
(

1− exp(κE[w|1, s]− βc)
exp(κE[w|0, s]) + exp(κE[w|1, s]− βc)

)

Assumption 1 allows us to write the expectation as the probability p(q(·)), and assump-

tion 3 introduces linearity in the µ parameters:

E[w|s] = p(µ2 + αµ1)
exp(κp(µ2 + αµ1)− βc)

exp(κp(αµ1)) + exp(κp(µ2 + αµ1)− βc)
+

p(αµ1)

(
1− exp(κp(µ2 + αµ1)− βc)

exp(κp(αµ1)) + exp(κp(µ2 + αµ1)− βc)

) (23)

Case when α = 0

40



If we have many observations of α = 0, then equation 23 simplifies greatly:

E[w|W,α = 0] = p(µ1)
exp(κp(µ1)− βc)

exp(κp(0)) + exp(κp(µ1)− βc)
+

p(0)

(
1− exp(κp(µ1)− βc)

exp(κp(0)) + exp(κp(µ1)− βc)

)

At win states W ≥ w̄, any additional win will not change the payoff in the final period.

This relies on the assumption that the alternative reward payoff function, D, is flat at state

W ≥ w̄. In the NFL, draft order after you make the playoffs depends more on performance

in the playoffs and less on regular season record, so the assumption is not egregious. This

means that UT (s1) = UT (s0), which implies that κ = 0:

E[w|s] = p(µ2)
exp(−βc)

1 + exp(−βc)
+ (24)

p(0)

(
1− exp(−βc)

1 + exp(−βc)

)
(25)

However, we cannot disentangle the effects of µ1 from βc here. We need some sort of

exclusion restriction. The exclusion restriction must satisfy:

• Modify payoff to effort while keeping cost of effort fixed OR

• Modify cost of effort while keeping payoff of effort fixed

• Must affect teams who have clinched playoffs (or home-field advantage) and have α = 0

Case when α 6= 0, W ≥ w̄

Using the same assumptions from above, we simplify UT (s1) = UT (s0) implying κ = 0. We

rewrite equation 23 as:
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E[w|s] = p(αµ1 + µ2)
exp(−βc)

1 + exp(−βc)
+

p(αµ1)

(
1− exp(−βc)

1 + exp(−βc)

) (26)

We observe the left hand side of equation 26 for different α. Thus, variation in win percent-

ages in this state must be attributed to α because the probability of exerting effort is only

a function of βc. Hence, µ1 is identified conditional on µ2 and βc being identified.

Identification of βd

We use E[wi,T−1|α, w̄ − 2],E[wi,T−1|α, w̄ − 3], . . . to identify βd. The idea is the following:

In these states, no matter what the team does, they cannot make the playoffs. Thus, final

period payoffs only come from the draft utility, βdD(·). In different seasons, we observe

variation in D(·) because the quality of the amateur prospects differs. Hence, performance

of teams in this state-time combination across different seasons will vary only as a result of

the draft quality varying. So βd is identified.
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