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Abstract

Placing products in front of consumers frequently involves side payments. Such payments

often require legal disclosure, but the style and the extent of such disclosure can be obfuscated.

Nevertheless, prominent disclosure is sometimes chosen voluntarily. I collect novel data from

Twitch.tv on revealed preferences for highly-visible (versus obfuscated) disclosure which let me

identify its effects on content creation and study why prominent disclosure exists. An illustrative

model motivated by Spence (1973) demonstrates that disclosure is a tool influencers use to signal

the degree of alignment between sponsored products and their audience. Voluntary disclosure is

governed by a trade-off between present-day viewership revenue and dynamic reputation value.

Reduced-form evidence supports the model’s results that, in a separating equilibrium, influencers

visibly disclose well-aligned (“high type”) sponsors and pool unaligned (“low type”) sponsors

with organic content to mitigate reputational damage (e.g. “sellout” effects). In counterfactual

analysis using an estimable structural model, enforcing prominent disclosure would lead to a

14.6% decrease in sponsored content streams and a 2.7% increase in platform viewership despite

a drop in content production. This is due to empirical estimates which imply that influencers

would substitute to organic content rather than disclose low-type sponsorships. If consumers

prefer organic content over sponsored content, then a policy mandating highly-visible disclosure

improves consumers’ platform experience.
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1 Introduction

Consumers frequently encounter situations where products are placed in front of them. In

grocery stores, shelves are carefully organized to cater to consumer needs. Characters in shows or

movies may drive particular cars. Social media platforms are flooded with product endorsements by

celebrities and influencers. Some placements reflect the organic preferences of the store or celebrity,

while others involve financial transactions that consumers may not be aware of. In certain contexts,

disclosure of such paid placements is legally required but the party receiving payments can choose

its degree of subtlety. Coase (1979) argues that disclosing such payments can be disruptive, as was

the case with song placements on radio in the 1950’s and ’60s. However, if disclosure can be highly

diminished to limit disruption in some contexts, why then would prominent disclosure ever occur?

Disclosure is challenging to study because observed variation in disclosure is required to identify

its effects. Such variation is hard to find because disclosure in many settings is already regulated.

To complicate things further, disclosure may be used as a tool to trigger other informational

mechanisms, making it difficult to recommend policy interventions without also considering these

additional effects. For example, one may choose to disclose paid placements if disclosure triggers

signaling (Sahni and Nair, 2020a) or celebrity effects (Kirmani and Shiv, 1998; Chung et al., 2013;

Knittel and Stango, 2014; Knoll and Matthes, 2017). Basketball players and apparel companies

announce shoe deals publicly, even in the absence of a disclosure law, because celebrity effects and

attention from the announcement help both parties. In other cases, disclosure may not happen

since enacting such mechanisms is costly and can disrupt programming or damage reputation.

Mandating disclosure removes the ability to signal or draw attention as everyone is forced to

disclose. Revealed preferences for disclosure enable the study of how disclosure interacts with these

underlying mechanisms because we observe context surrounding each disclosure decision and allow

for a proper assessment for how disclosure policy will affect stakeholders.

This paper studies why voluntary, prominent disclosure occurs and the impacts of disclosure

regulation in the empirical setting of influencer marketing. I use a dataset of content and disclosure

choices comprising more than 1,000 English-speaking influencers (“streamers”) from Twitch.tv, the

world’s largest online video game livestreaming platform. The most unique aspect of my setting is

that disclosure policies have been enacted but enforcement has been lenient, enabling streamers to

“hide” disclosure labeling of sponsored streams behind a long string of text in their stream titles.

I observe within-influencer variation in both content choice and revealed preferences for disclosure,

allowing me to identify disclosure effects. Furthermore, I observe institutional-specific features

which help isolate mechanisms driving disclosure and nondisclosure decisions. These features cul-

minate in a structural model of streamer content choice and a counterfactual which simulates the

effects of enforcing a strict disclosure policy on Twitch.

I port Spence (1973)’s signaling model to the influencer marketing realm, highlighting differences

in disclosure across paid placement contexts. I characterize and contrast two disclosure equilibria

when disclosure is a choice. A separating equilibrium exists in settings where the medium discloses

well-aligned (high type) brands but hides poorly-aligned (low type) brands with organic, non-
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advertising content.1 Disclosing low types causes a “sellout effect” whereby followers’ and non-

followers’ inferences about the quality of the medium’s content in the future are negatively impacted.

Pooling low types with organic content can trick some followers and non-followers, minimizing

sellout effects. Signaling effects offset the negative sellout effects for high types, signaling to non-

followers the popularity or reputation of the medium and signaling to followers the exceptional fit

of the sponsor. I show that a nondisclosure pooling equilibrium exists in settings where sellout

effects outweigh signaling effects, making disclosure too reputationally costly to invoke. Overall,

the ability to choose disclosure intensity enables the toggling of mechanisms that signal fit or match

values, thereby separating a high type placement opportunity from other less valuable or relevant

alternatives. Yet, doing so comes with possible reputation costs.

The stylized model generates some implications for my livestreaming setting. For a separating

equilibrium, the stylized model predicts that content engagement under high disclosure should

be higher than engagement under low disclosure. Second, a single crossing/decreasing differences

condition implies that costs of disclosure should be elevated for low types compared to high types.

Third, when a low type discloses, off equilibrium path beliefs imply that engagement should see a

temporary increase.

My descriptive evidence evaluates all three characteristics using data. OLS regression results

show that high disclosure streams are correlated with 6-13% higher viewership compared to low

disclosure streams, commanding viewership at or above viewership of organic streams. This fact,

combined with the fact that the majority of sponsored streams are low disclosure, implies that my

context likely resides in a separating equilibrium. Using an instrumental variables (IV) regression

strategy, I measure that low types have much higher reputation costs than high types when choos-

ing high disclosure. My instrument proxies a unique feature of the industry; the sponsor may force

streamers to disclosure for various reasons such as fear of regulation enforcement or other idiosyn-

cratic preferences. This instrument effectively allows me to observe off-path equilibrium outcomes;

some low types are forced to disclose by a sponsor’s directive. The IV regression also predicts an

unbiased, positive effect on viewership for high disclosure streams, consistent with off-equilibrium

path outcomes from the stylized model.

I construct a measure of “alignment” to provide more evidence that high types are selecting

into disclosure in a separating equilibrium. This is a correlational measure between the qualitative

characteristics of video games and a streamer’s historical frequencies of playing games with these

characteristics. For the subset of streamers whose historical preferences are relevant to their game

choice, streamers choose to disclose games that are more aligned. The profile of high disclosure

sponsored games looks very similar to the profile of organically chosen games. The games that

are not prominently disclosed are much lower in alignment and look much different than a typical

organically chosen game. This finding further supports the separating equilibrium outcome where

streamers disclose games with better types.

1Alignment does not necessarily entail vertical quality. For example, a sports drink may be well-aligned with an
athlete but a cryptocurrency sponsor is likely poorly-aligned
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I build on the stylized model to create a dynamic discrete choice model of influencer content

decisions, tying together all aforementioned mechanisms and descriptive results. The stylized model

noticeably lacks the ability for influencers to substitute between content types. In reality, influencers

can always pass on sponsored content and create organic content instead. In my structural model,

influencers have the option in each period to create sponsored or organic content. If they choose

sponsored content, they must also simultaneously make a high/low disclosure decision. Short term

payoffs are realized in terms of viewership, and dynamics come from the change in the number

of followers. The change in the number of followers today affects influencers tomorrow because

followers are a big determinant of viewership.

I allow for selection into high disclosure by introducing an exogenous, unobserved state variable

akin to brand “alignment” or “type.” This state alters the payoff of high disclosure; in the high

state, prominent disclosure will be more lucrative than low disclosure. I assume influencers observe

this state before making their decisions, thereby allowing selection into high disclosure when it is

advantageous to do so. This binary, hidden state is a simple way of incorporating the previously

discussed “signaling mechanisms” into my dynamic model. Viewers form beliefs over this “align-

ment” prior to clicking into the stream and watching. The number of followers acquired duirng the

stream responds to disclosure decisions and the unobserved state.

I estimate the model using the expectation-maximization algorithm from Arcidiacono and Miller

(2011), which addresses persistent unobserved heterogeneity. My unobserved “alignment” state acts

as a transient, one-period unobserved state which simplifies the estimation algorithm. I am able to

identify this unobserved state using correlation between multiple outcomes affected by disclosure.

As an example, suppose that synergies exist between high disclosure and high alignment. Then,

observing many followers acquired during a high disclosure sponsored stream would place a large

probability on being in the high state. Model estimates suggest that disclosing a poorly aligned

sponsor negatively impacts their number of followers, drawing attention to the sellout nature of the

content. These results are in line with the predictions from the stylized model.

In my headline counterfactual, the frequency of sponsored content decreases by 14.6% when

prominent disclosure is enforced. This decline is driven by influencers’ strategic behavior; in states

where the sponsor is poorly aligned (99.5% occurrence), sponsorship frequency decreases by 16.2%,

whereas this decrease is just 2.5% in the well-aligned state (0.5% occurrence). Thus, almost all

of the counterfactual policy’s impact comes from the rejection of poorly aligned sponsors that

influencers would have otherwise accepted in the absence of regulation. If poorly aligned sponsors

imply low quality streams, then consumers are better off in the counterfactual scenario. Overall

viewership on the platform increases by 2.7% as influencers substitute away from low type sponsors

more towards organic content rather than no stream. Therefore, the platform also benefits from

the policy.

Related Literature. My main contribution is showing that influencers use disclosure as a

mechanism to signal their match value with a paid product placement to followers. This builds on

the discussion of product placements in more traditional marketing settings like slotting fees (Sul-
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livan, 1997; Sudhir and Rao, 2006; Hristakeva, 2022), radio (Coase, 1979), and television (Russell,

2002). Another key contribution is showing that influencers will produce less sponsored content

when prominent disclosure is enforced.

I build on two papers closest to mine: Ershov and Mitchell (2020) and Cheng and Zhang (2022).

The former studies the effects of advertisement disclosure on influencer content creation using a

policy change in Germany, while the latter looks at reputation burning effects for YouTube creators.

With regard to Ershov and Mitchell (2020), I demonstrate that accounting for signaling in addition

to selection into disclosure are necessary to quantify effects of disclosure policy. While Cheng

and Zhang (2022) consider reputation burning and brand-influencer fit, I show that disclosure is a

crucial lever used by influencers to signal good fit and to mitigate reputational costs.

I also contribute to the burgeoning literature on influencer marketing. Much of this literature

is theoretical, especially regarding disclosure (Berman and Zheng, 2020; Fainmesser and Galeotti,

2021; Mitchell, 2021; Pei and Mayzlin, 2022). This literature tends to focus on mechanisms of

consumer demand (e.g. word-of-mouth) and consumer welfare. Instead, I focus on the supply

side of the market to understand why influencers decide to advertise or disclose. I also measure

viewership of sponsored content, incorporating viewers’ beliefs about brand-influencer alignment

into the viewership demand equation. This provides advertising brands another factor to consider

when assessing the potential effectiveness of influencer marketing campaigns (Rajaram and Man-

chanda, 2020; Morozov and Huang, 2021; Li et al., 2021; Yang et al., 2021; Nistor and Selove,

2023). I define and quantify “brand alignment” between a brand and an influencer using historical

revealed preferences, providing future researchers a method to quantitatively analyze hypotheses

regarding influencer credibility, authenticity, and influencer-product congruence (Avery and Israeli,

2020; Schouten et al., 2020; Kim and Kim, 2021; Li et al., 2021; Pöyry et al., 2021; Amano et al.,

2023). My long panel of influencer choices allows me to identify selection mechanisms incentivizing

voluntary disclosure that lab experiments are unable to consider (Boerman, 2020; Kay et al., 2020).

Moreover, I contribute to the literature on native advertising and its disclosure (Evans et al.,

2019; Aribarg and Schwartz, 2020; Sahni and Nair, 2020b). One paper to note is Sahni and Nair

(2020a), who use a field experiment to study effects of disclosing search ads on a Yelp-like restaurant

platform. They find that disclosure increases clickthrough and calls to advertising restaurants.

They attribute this to a “signaling effect,” whereby customers perceive advertising restaurants to

be higher in quality than non-advertising ones. My findings are consistent in that disclosure seems

to serve as a signal in some circumstances. However, I find that disclosure can be detrimental

especially when reputational costs of disclosure are high. These circumstances occur when the

sponsor is not well aligned with the influencer.

Finally, my paper is one of the few that uses the online livestreaming setting. There is some

focus on non-sponsorship mechanisms of influencer monetization such as donations and various pay-

what-you-want mechanisms (Lin et al., 2021; Lu et al., 2021). Morozov and Huang (2021) study

the effects of streaming on video game usage more generally, treating all video game streaming as

advertising. Simonov et al. (2021) uses a specific subset of Twitch data from streams of Counter-
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Strike:Go tournaments in addition to viewer-level chat data to study the role of suspense. I add to

this literature by focusing on influencers’ revealed preferences for disclosure and the mechanisms

leveraged by disclosing sponsorships.

2 Institutional Detail and Data

2.1 The Online Livestreaming Industry

The online livestreaming economy has been booming in recent years. Audiences watched almost

100 million hours of online livestreams per day in Q1 20212. The most popular livestreamers

command tens if not hundreds of thousands of concurrent viewers and sign exclusive streaming

contracts worth tens of millions of dollars 3. Twitch, specifically, occupies about 70% market share.

On average, there are 2.5 million concurrent viewers on Twitch.tv and 90,000 unique live streamers

at any moment. Influencers on the Twitch platform usually stream themselves playing video games

or “just chatting,” which is a general category for non-gaming related or “in real life (IRL)” streams.

Advertisers have taken note of streamers’ impact; sponsored livestream occurrences increased

88% year over year (YoY) and watch time increased 137% YoY in Q1 2021. Sponsored livestreams

occupied 3% of total watch time as of March 2021.

Streamers have three broad ways to monetize. The first way involves Twitch-embedded ads,

which are pre-negotiated by Twitch and its advertisers. Similar to Youtube ads, these ads usually

run when a consumer first lands on a streamer’s livestream. Streamers can also press an “ad button”

whenever they want to run such ads. There is no way to obfuscate these ads, payment depends

upon the calculated reach of the ads, and in recent years, these ads have become unblockable and

unskippable. The second way involves direct contributions from viewers. Viewers can unlock a

streamer’s premium channel features by becoming a paid “subscriber,” which costs anywhere from

$5 to $25 a month. Streamers then receive a portion of the subscription revenue. Streamers can

also receive donations from viewers through Twitch or a third party.4

External sponsorships are the third way, but even then there are nuances. I define two subcate-

gories of sponsorships - brand deals and game developer deals. A brand deal generally involves any

product that is not a video game itself. Apparel, computer hardware, and food delivery services

are examples of brand deals. These sponsorships are not the focus in this setting because they

generally do not alter the content of the stream. Game developer (game dev) deals are product

demonstrations or game playthroughs that alter alter the content of a stream. The typical game

developer deal involves a streamer playing a sponsored game for a few hours.

Sponsorships require negotiation around compensation and deliverables. Disclosure, according

to industry insiders, is rarely part of the negotiation. Some sponsors may have certain preferences

2Stream Hatchet Live Game Streaming Trends Q1 2021
3Anecdotal evidence from streamers within the industry, see: https://www.youtube.com/watch?v=qDMJQeHxYeQ
4Livestream donations are the object of focus in Lin et al. (2021) and Lu et al. (2021)
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over disclosure practices,5 but sponsors usually do not dictate how influencers should disclose.

2.2 Data

My data comes from two main sources. Streaming data is collected from Twitch.tv’s API. I

collect data on the top 430 english speaking Twitch streamers starting in February 2021. In August

2021, I expanded the data collection to the top 1,300 english speaking Twitch streamers. In this

version of the paper, the data collection period ends on April 30, 2023.

Every 5 minutes, I am able to obtain, for each streamer, the live/offline status of their stream,

the number of concurrent viewers (if live), the number of total views a channel has, the title of the

stream, the game being played, and the number of users following the channel.

Certain metrics are not updated every five minutes, so I aggregate data up to the user-stream-

game level. I drop stream-game combinations that are live for less than 30 minutes. For example,

if a user is live for 6 hours on Sunday, October 17th and they spend their first 2 hours streaming

League of Legends, the next 1 hour 45 minutes streaming Grand Theft Auto V, the next 15 minutes

“Just Chatting”, and finally spend their last 2 hours going back to League of Legends, this one

stream session would be broken up into three observations in my data even though there are four

stream-game combinations. For the structural model, data is aggregated one level further, up to

the daily level.

Statistic (per streamer) Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Observations 579.58 432.96 10 329 523 746 7,890
Num. streams 384.69 197.44 9 250 391 512 1,841
Num. unique games 51.73 77.79 1 12 27 61 1,148
Num obs any sponsor 25.53 59.06 0 1 9 28 1,110
Num obs any hi disc sponsor 2.14 6.49 0 0 0 2 95
Num obs game dev 10.82 21.88 0 0 4 13 356
Num obs game dev hi disc 1.49 4.96 0 0 0 1 74
Avg. conc. viewership 3,683.59 8,476.63 94.80 739.59 1,458.85 3,037.49 105,018.90
Avg. stream+game length (hr) 4.83 2.26 1.28 3.22 4.52 5.91 23.38
Game dev sponsor 0.017 0.031 0.000 0.000 0.008 0.022 0.383
Any sponsor 0.040 0.067 0.000 0.003 0.019 0.049 0.848
Game dev hi disc pct (conditional on ad) 0.145 0.243 0.000 0.000 0.000 0.222 1.000
Any sponsor hi disc pct (conditional on ad) 0.111 0.207 0.000 0.000 0.000 0.125 1.000
Current followers 621,062 1,133,851 5,934 133,334 286,355 638,654 17,807,250
Initial followers 461,453 942,332 1,571 99,808 200,206 456,120 16,714,288
Follower change 159,609 331,725 −53,903 14,603 45,111 152,898 3,832,885

Table 1: Streamer summary statistics, 1159 streamers

After selecting streamers based on some criteria (see Section 2.4 for more detail), I am left with

1,159 streamers and around around 670,000 observations at the user-stream-game level. Streamer-

level summary statistics are provided in Table 1. Over two-thirds (821) of all streamers have done

a game dev sponsored stream. Out of these 821 influencers, 377 have highly disclosed a sponsored

stream at least once. The median streamer has 551 stream-game observations over 394 streams,

5For example, in my data, the game Legends of Runeterra almost always has #ad at the beginning of the stream
title across different influencers
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about 1.4 separate game sessions per stream. The median streamer has 4 observations with a game

dev sponsor, comprising about 1% of their observations.

The median streamer commands just under 1,500 average concurrent viewers (ACV) during

a stream.6 ACV is defined as the mean number of unique viewers on a stream at any point the

streamer is live. This is a crucial metric, as ACV is how Twitch culture tends to measure the size

of a streamer.7

Sponsored content streams occur rather infrequently; about 12,000 or 1.8% of all observations

are sponsored. About 1,600 of these are considered “prominently disclosed” under my definition

(see Section 2.3).

Game characteristics are collected from the Internet Game Database (IGDB) API, which is a

website owned and operated by Twitch. For each game, I can access characteristics such as its

genres, themes, storylines, release date, user and critic ratings, and much more. Twitch uses IGDB

on its own website to make it easier for viewers to search for games. In my data sample, streamers

play almost 9,000 unique video games.

2.3 Identifying Sponsored Streams

One implicit assumption I make is that streamers truthfully disclose all sponsored content.

There is good reason to believe that disclosure happens; FTC regulations require disclosure of any

“material connections” between an influencer and a brand8, and so does Twitch’s terms of service9.

Streamers in my data are among the most popular on Twitch, many of whom treat streaming as

a full-time job. The threat of enforcement from the FTC and Twitch to their livelihoods should

be enough to ensure disclosure 10. The ability to obfuscate while complying should also limit non-

disclosure. Discussions with talent management agencies in this industry support this claim that

streamers generally are well-behaved with respect to disclosing sponsored content.

When viewers browse for a stream, they can see a thumbnail picture of the livestream, as well

as information such as the title of the stream, the name of the streamer, and the game being played

currently by the streamer. Figure 1 shows what the viewer observes when browsing for a stream.

Prior to clicking on a stream channel and watching the stream, a potential viewer can only find

out about the sponsored nature of the stream through the stream title.

I identify sponsored content using a simple string match on the stream titles. Within the stream

titles, I search for instances of #ad, #sponsored, and variations of #*partner (e.g. #EpicPartner).

Every stream that simply contains one of these hashtags is tagged as potentially sponsored. To

distinguish game dev deals from brand deals, I manually look for each observation if the name of

6These are big streamers; for example, https://twitchtracker.com/day9tv is a ∼ 1, 500 viewer streamer who
is in the top 0.03% of Twitch

7See https://www.quora.com/Why-do-Twitch-streamers-refer-to-each-other-as-Andy as an example
8https://www.ftc.gov/tips-advice/business-center/guidance/ftcs-endorsement-guides-what-people-are-asking
9https://www.twitch.tv/p/en/legal/terms-of-service/

10Teami Detox Teas is an example of a company recently fined in 2020; celebrities endorsing the product such
as Cardi B were warned for their lack of disclosure: https://www.ftc.gov/news-events/press-releases/2020/03/tea-
marketer-misled-consumers-didnt-adequately-disclose-payments
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Stanford Graduate School of Business 1

Game: Lost Ark

Figure 1: Example of Twitch browse page for game Lost Ark

the game being played is contained in the stream title of the sponsored content. Some examples of

titles related to brand deals and game dev deals are provided in Table 2. I separately identify high

High Disclosure Low Disclosure

Game dev
#Sponsored: Legends of Runeterra ROCKET LEAGUE THEN Marvel Strike Force #ad !marvel
(Game indicated on stream: Legends of Runeterra) (Game indicated on stream: MARVEL Strike Force)

Brand
#Sponsored by Universal — Follow @shroud on socials Herman Miller Gaming Giveaway !hmgaming #sponsored
(Game indicated on stream: Apex Legends) (Game indicated on stream: Battlefield 2042)

Table 2: Examples of stream titles

disclosure and low disclosure using the location of the hashtag in the stream title. The length of

the stream title dynamically adjusts depending on the screen resolution of the viewer’s device. The

typical length displayed on the screen is between 20 and 40 characters. Since our counterfactual is

to make disclosure quite prominent, I define high disclosure as an indicator function taking on the

value 1 if the start of the hashtag is located within 15 characters from the front of the stream title.

My results in this paper are robust to alternative definitions of high disclosure, including arbitrary

locations greater or less than fifteen characters from the beginning of the stream title. Table 2 gives

examples of high and low disclosure ads.

The location of the disclosure label for game dev deals is displayed in Figure 2. The red dashed

line indicates the 15th character, where I set my cutoff for high disclosure. There is a mass at zero,

indicating that a large number of sponsored streams have the hashtag immediately at the beginning

of the stream title. There are no other large masses that jump out, indicating that the decision to
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put the hashtag at the beginning might be selective.

Figure 2: Absolute location of advertising disclosure, game dev deals only

2.4 Data Quality Issues

Since the scraped data comes from a public API, there are some inherent issues. The biggest

issues both pertain to the measurement of the number of followers. Twitch struggles in distinguish-

ing real human behavior from bot/automated computer behavior. Botting can be intrusive; bots

can inflate the viewership and the number of followers of a channel to make it look more appealing

to potential sponsors. Twitch sometimes conducts operations to delete bot accounts and remove

bots from follower counts. Botting and bot-hunting can cause inaccurate, lumpy measures of fol-

lowers.11 I correct for potential “botted” data in the number of followers by identifying periods of

bot-following and bot-deleting by Twitch using large jumps and dips, where the follower change is

±5 standard deviations from a streamer’s mean follower change, and construct a trend of “true”

followers that a streamer has.

Another issue with the data involves channels that are not run by influencers. These channels

often include the official channels of video game developers and publishers (e.g. Riot Games),

dedicated esports tournament channels (e.g. ESL), and game-specific channels (e.g. Rainbow Six).

I remove these Twitch channels because they rarely produced sponsored content and are not an

individual brand. Twitch channels that are live for less than 10 days in the timeframe of the data

are also removed.

11As an example: https://twitchtracker.com/adinross
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Finally, there are some missing days in the data due to various issues with scraping. A few

days are missing because of various server resets that the script was running on. A few days in

August 2021 are missing because viewership data was bugged on the API endpoint for those days.

A 30 day span from December 2021 - January 2022 is missing because the author went home for

winter break and did not check if his scripts were still running. These create the following issues:

for descriptive evidence, the biggest loss is sample size. However, over 95% of possible observations

(∼ 670, 000 observations) remain. For regressions, month-year fixed effects should handle any time-

specific systematic biases. If video games streamed during these time periods are not fundamentally

different from other time periods, other kinds of descriptive evidence should remain unbiased. For

the dynamic model, one may worry about an “initial conditions” kind of problem occurring because

of gaps in the data.12 Biases related to this problem may be mitigated by the long panel; I observe

over 700 days of choices for the initial cohort and about 600 days of choices for the additional

cohort.13

3 A Stylized Model

In this section, I bring the classic Spence (1973) signaling model to the context of paid product

placement. The goal is to explain why we see voluntary disclosure of paid placements in some

settings but not in others and to generate testable conditions for my specific setting of influencer

marketing.

There are two players in the model, one “influencer” i and one “follower” f . In general,

the “influencer” can be thought of as any party receiving payment for paid placement, and the

“follower” is any consumer who engages downstream with this party.14 Influencer i exogenously

realizes content with alignment θ, which is unobserved to follower f . There are three discrete

types θ ∈ {θH , θL, θ0} ∈ R>0, corresponding to high alignment sponsor, low alignment sponsor,

and organic content respectively. These types are realized with probabilities {pH , pL, p0} which

all individually exist on (0, 1) and collectively sum to 1.15 I place two restrictions on the types,

θH > θL and θ0 > θL, forcing the high and organic types to be strictly better than the low type.

The influencer has two actions to choose from, j ∈ {HD,LD}, which map to high and low

disclosure respectively. Low disclosure in this setup is essentially no disclosure, as organic types θ0

12e.g. Simonov et al. (2020)
13Two additional features of the model directly address this. First, transitions are Markovian, mitigating effects

on the transition likelihood. Conditional on observing today’s state, yesterday’s state only matters for computing the
likelihood of observing such a transition. I can simply drop observations where I don’t observe the prior day’s state.
Second, the model lacks any persistent components (including unobserved heterogeneity), so individual likelihoods
do not have to be multiplied over time before taking logs.

14For example, i can be a TV program and f can be a viewer.
15This is modeled as a vertical characteristic within influencer-brand pair. Conceptually, θ can vary horizontally

for the same brand across influencers. That is, different influencers may have different alignment measure with the
same sponsor.
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can choose j = LD. i receives the following payoffs for their choice j:16

πij = v − c(j|θ) (1)

where v ∈ R≥0 is viewership chosen by the follower, and c(j|θ) : {HD,LD, 0} → R≥0 is a reduced

form dynamic reputational/brand equity cost of choosing action j given the type θ. There are

two restrictions on c(·). First, c(HD|θ) > c(LD|θ) for all θ, a monotonicity assumption on the

reputation cost function. Second, c(LD|θ0) = 0. This restriction states that “low disclosure” of

the organic type is costless. This restriction should be fairly innocuous since “low disclosure” of

organic types is no disclosure.

To discourage v = 0 choices from followers, the influencer has a credible threat of not engaging

in the market (i.e, no content) with payoff 0.

Next, I consider the follower’s problem. Follower f is a risk-neutral agent, with payoffs:

uf = θ − v. (2)

Since followers do not observe θ prior to making their choice of v, they maximize their expected

utility; i.e. E[θ|j] − v. Assume follower’s outside option is normalized to utility 0. Disclosure

in this model has no consumption value; the only value from disclosure is information about the

influencer’s type to the follower.

The equilibrium concept I will use for this model is perfect Bayesian equilibrium (PBE). This

equilibrium is characterized by: i.) a disclosure decision j for each type θ ∈ {θH , θL, θ0}, ii.)

Followers’ posterior beliefs over θ after observing j, iii.) Viewership choices of the followers v(j).

The equilibrium must satisfy optimality of choices for both i and f , and all beliefs must be consistent

with Bayes’ rule.

Now, define a follower’s belief that a content is of type θ given action j as: µθ(j) =

Pr(θ|j),
∑

θ µθ(j) = 1. I need an assumption that reflects followers’ beliefs about sponsored content

in these settings:

Assumption 1 Followers believe that high disclosure only occurs for sponsored content, i.e.

µ0(HD) = 0.

The game proceeds in two stages as follows. The influencer moves first, exogenously realizing θ

and making disclosure choice j. Followers move second, observing the choice j and forming beliefs

over the alignment of the content µθ(j). Followers then choose v(j) that makes them indifferent

between watching the content and the outside option.

There are two possible interpretations of v(j). If we stick to the model setup such that f is

an singular follower, then, depending on the definition of other elements in the model, v(j) can

16One could also include an “advertisement payment term”, e.g. a ∗ 1{θ ∈ (θL, θH)} to the influencer payoffs that
reflects the payment an influencer would receive when they produce sponsored content. Adding such a term does not
change the analysis, so is omitted for simplicity.
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be thought of as either how long a follower chooses to watch or how likely a follower is to watch.

If f is a mass of followers, then we can interpret v(j) as the number of followers watching or the

proportion of followers watching. The marginal follower is indifferent between watching the content

and choosing the outside option of not watching.

3.1 Pooling Equilibrium

I now show that pooling equilibria exist in the model. Define pL as the probability that θ = θL,

and likewise pH for θ = θH . In a pooling equilibrium where j = LD is the only choice made by all

types, no information is relayed to the follower. The (rational) follower knows the distribution of θ

in the overall population, so the optimal viewership choice for follower f is:

v∗ = (1− pL − pH)θ0 + pLθL + pHθH , j = LD. (3)

In the pooling equilibrium, we must specify the beliefs when high disclosure is realized. With the

help of Assumption 1, we have:

µH(HD) = λHH , λHH ∈ [0, 1]

µL(HD) = 1− λHH

We also need high disclosure costs to be sufficiently high compared to low disclosure for all types:

c(HD|θ)− c(LD|θ) > Q(λHH), ∀θ (4)

Under these conditions, we have the following pooling equilibrium lemma:

Lemma 1 A pooling equilibrium where j = LD for every θ exists with beliefs defined as above

See Appendix A.2 for the proof.

In settings such as TV shows, movies, and radio, we see this pooling equilibrium. The expla-

nation for why disclosure does not exist in these setting is that costs of disclosing are high. For

shows and movies, the costs of disclosure are high because disclosing might disrupt the show or

degrade the perceived quality of the show overall. In Coase (1979)’s radio example, the costs of

disclosure for the radio DJ were astronomically high for two reasons. First, there was a massive

reputational effect of being labeled a “sellout.” Radio shows of “payola” affected DJs were cancelled

or became much less popular after congressional trials exposed that payments existed - even when

there wasn’t enough proof to implicate DJs for accepting undisclosed payments. Second, reading

disclosures forces breaks in the music and sounds like advertisements, making the radio show much

less palatable to listeners.

13



3.2 Separating Equilibrium

Now I define conditions for a separating equilibrium. In this separating equilibrium, θH types

choose to signal their types by choosing HD, while θL types choose LD to pool with θ0 types.

Define µH(j), µL(j) as the belief that follower f holds about the probability that content is θH , θL

respectively: µH(j) = Pr(θ = θH |j), µL(j) = Pr(θ = θL|j). The separating equilibrium is

associated with the following beliefs:

µH(LD) = 0, µH(HD) = 1

µL(LD) = λLL, µL(HD) = 0

For the choice of low disclosure, j = LD, optimal viewership and payoffs for the choices are:

v∗(LD) = (1− λLL)θ0 + λLLθL (5)

π∗(LD) = (1− λLL)θ0 + λLLθL − c(LD|θ) (6)

For high disclosure, j = HD, these are:

v∗(HD) = θH (7)

π∗(HD) = θH − c(HD|θ) (8)

One more condition is needed; since payoffs are linear except for c(j|θ), we need a single crossing

condition. In this case, the condition must say that the reputational effects of a high disclosing low

type is sufficiently larger than a low disclosing low type:

c(HD|θL)− c(LD|θL) > M(λLL) (9)

and also say that the reputational effects of a high disclosing high type isn’t that bad when compared

to low disclosing high types:

c(HD|θH)− c(LD|θH) ≤M(λLL)

Recall from the first part that if c(HD|θH)− c(LD|θH) was sufficiently large then there would be

a pooling equilibrium. Thus, we must make sure that the difference in costs must be less than the

minimum of the two conditions:

c(HD|θH)− c(LD|θH) ≤ min{M(λLL), Q(λHH)} (10)

Equations 9 and 10 together comprise the decreasing differences condition that ensures single cross-

ing (see Figure 3). Now I can characterize the separating equilibrium.

Lemma 2 A separating equilibrium exists where θH types always choose HD and types θL, θ0

14



c(HD|θL)− c(LD|θL)

c(HD|θH)− (LD|θH)

M
(λ
L
L
)

Separating
Equilibrium

Pooling Eq.

Figure 3: Decreasing differences condition

always choose LD, beliefs are defined as above, and the decreasing differences condition holds.

See Appendix A.3 for the proof.

My context of online livestreaming seems to exist in the environment of a separating equi-

librium. Reputation can be proxied in this setting with follower count.17 There are two groups

influencers want to signal to: followers and outsiders (non-followers). Outsiders become followers

when their expectations of the utility that they would gain from an influencer’s future content

exceeds some threshold. Data on individual follower beliefs doesn’t exist, so I use change in the

number of followers as a statistic for utilities going over/under this threshold. When a sponsor is

type θH , influencers disclose to signal to outsiders that they are popular or reputable, attracting

more engagement from outsiders and converting some of them into followers. Influencers signal

to followers that the sponsor is a good match for them, driving up engagement from followers.18

Without disclosure, followers and outsiders draw inferences just from preconceived beliefs about

the high type sponsor without any additional positive signals. Comparatively, engagement and

follower conversion is lower.

When a sponsor type is θL and influencers disclose, influencers reveal that they are willing

to accept any sponsor for cash. Outsiders’ perspectives of the influencer worsen, so they do not

engage with the current content as much and do not convert to becoming followers. Followers place

a greater emphasis on the current sponsor’s type, making them believe that the low type will be

representative of the influencer’s future content - this is the “sellout effect.” The followers whose

beliefs about future utility fall under the threshold unfollow and become outsiders. Under low (or

no) disclosure, some negative responses to the low type nature of the content still occur, but some

followers may never realize that content is sponsored, mitigating “sellout” effects.19 Hence, the

cost of disclosure for influencers is higher for θL types because sellout effects exacerbate negative

beliefs about future content and is lower for θH types because positive signaling effects mitigate

the sellout effects.

17See Cheng and Zhang (2022) for a similar interpretation of subscribers as reputation on Youtube.
18Reinikainen et al. (2020); Lou (2022) note that parasocial relationships between influencers and followers leads

to followers actually celebrating sponsorship deals
19Lou (2022) claims that because of parasocial relationships, followers largely believe in the benign intent of the

influencers’ sharing
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4 Descriptive Results

In this section, I present descriptive evidence that aims to achieve two objectives. First, the

descriptives test predictions made by the theory model, providing support for a separating equilib-

rium where influencers signal more aligned sponsors. Second, the descriptives help justify various

decisions made in formulating the structural model. I show that sponsored game dev streams are

associated with lower average concurrent viewership (ACV) and fewer new followers compared to

organic content. Lower ACV is a short term cost that decreases the Twitch-ad and donation revenue

for a particular stream, and fewer followers decreases future viewership, leading to less Twitch and

sponsor incomes in the future. However, if a high-type sponsor chooses high disclosure, signaling

effects improve ACV. I use an instrumental variables regression to recover unbiased estimates of the

effects of disclosure. I then construct a measure of “brand alignment” using qualitative video game

data and streamers’ histories to show that streamers select into high disclosure when video games

are well-aligned. Lastly, I provide evidence supporting forward-looking behavior by streamers.

4.1 Influencer marketing is in a separating equilibrium

I run a OLS regression with ACV and new followers as my dependent variables of interest on

stream-game level data with the specification:

Yit = β0 + βaadit + βdHDit ∗ adit + βxxit + νi + τt + ξdev + εit (11)

for influencer i and stream observation t. Y is an outcome of interest, such as ACV or net follower

change during the stream-game observation; ad is the indicator for a sponsored game dev stream;

HDit is high disclosure of the stream; xit includes time-varying observable characteristics of streams,

games, and influencers; νi is an influencer fixed effect; τt are quarter-year and day-of-week related

fixed effects; and ξdev are game developer fixed effects. Results of the regression are in columns 1 and

2 of Table 3. I also run a similar regression to equation 11, except I subset just the sponsored game

dev observations in columns 3 and 4. The regressions imply that game dev sponsors decrease ACV

by ≈ 6% and the number of followers acquired by ≈ 50%. Even though I do not control for selection

into sponsored content, institutional detail supports the idea that the OLS measurements are some

sort of upper bound. Streamers should always be trying to maximize ACV when making sponsored

content, because embedded ads and donations are positively correlated with ACV. Streamers are

also in some sort of repeated game with potential sponsors; if a sponsor can see that streamers have

shirked/sabotaged sponsored content efforts in the past, they would be hesitant to offer future deals

to the streamer. Given these arguments, the treatment effect of an experiment where streamers

were randomly assigned and forced to produce sponsored content would likely produce much more

negative effects.

When streamers choose high disclosure, their viewership increases 13% over low disclosure,

and 7% over organic content. Focusing on the sample of only game dev sponsored streams, high

disclosure is correlated with a still significant, but smaller 6% increase in viewership versus low
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Full sample Game dev sponsors only

Log ACV IHS New Followers Log ACV IHS New Followers

Game dev sponsor −0.059 −0.650
(0.015) (0.105)

Game dev spon hi. disc. 0.125 0.182 0.057 −0.035
(0.036) (0.178) (0.018) (0.088)

IHS game age −0.017 −0.038 −0.013 −0.047
(0.002) (0.008) (0.003) (0.019)

Same-week streams −0.006 0.073 0.020 0.175
(0.004) (0.014) (0.006) (0.032)

Log stream length 0.216 0.953 0.089 0.775
(0.006) (0.024) (0.016) (0.079)

Drops 0.305 0.982 0.121 1.153
(0.023) (0.070) (0.036) (0.151)

Championship 0.173 0.333 0.044 0.256
(0.066) (0.122) (0.194) (0.471)

Giveaway 0.053 0.312 0.087 0.697
(0.020) (0.062) (0.027) (0.135)

Charity 0.033 0.024 0.041 −0.242
(0.024) (0.080) (0.066) (0.327)

Subathon 0.091 0.015 0.288 0.601
(0.036) (0.084) (0.069) (0.303)

First game −0.228 0.089 −0.274 −0.264
(0.010) (0.029) (0.021) (0.228)

Log total followers 0.724 0.532 0.558 −0.322
(0.075) (0.169) (0.120) (0.699)

Alignment 0.418 1.558 0.051 0.131
(0.032) (0.118) (0.050) (0.287)

Num. obs. 669537 669537 12003 12003
R2 (full model) 0.848 0.576 0.895 0.607

Game Characteristics Y
Influencer FE Y
Quarter-Year FE Y
Game developer FE Y
Other Time FE Y

Table 3: OLS Regressions; standard errors in parenthesis clustered at influencer level. Influencer characteristics also include
variables about most commonly played game. Game characteristics include genres, themes, and game modes.
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disclosure. In both samples, the effect of high disclosure on the number of followers acquired is not

statistically significant.

These regression outputs are consistent with the most prominent implication from the theoret-

ical signaling model: if high types are about as good as organic types (θH ≈ θ0), high disclosure

outperforms low disclosure and organic streams in a separating equilibrium. This finding, com-

bined with the summary statistic that only 14.5% of game dev sponsored content is high disclosure

(Table 1), indicates that influencer marketing in the context of online video game livestreaming is

consistent with the characteristics of a separating equilibrium. If behaviors mirrored characteristics

of a pooling equilibrium, there would be a much higher incidence of high disclosure (close to 100%

of sponsored streams) because high disclosure as measured strictly increases viewership.

4.2 Selection on unobserved quality

I provide more data-driven evidence that streamers are not randomly disclosing; rather, they are

selectively choosing disclosure levels based on sponsor type. The theoretical model treats sponsor

type as a pure vertical quality, but that might not be the case in practice. “High type” sponsors

also depend on the horizontal match value - a kid-friendly streamer may not want to play any type

of horror game no matter how good the vertical quality of the game/game developer might be.

I construct a proxy metric for this horizontal aspect of sponsor type or “alignment” by us-

ing qualitative characteristics of video games. The IGDB data comes with details about gen-

res/themes/keywords of almost all video games seen on Twitch. I am able to compute, at every

observational period, the prior frequency of genres and themes of games that a streamer has previ-

ously played. As an example, at the eleventh observation of a streamer, if the streamer has played

platform games 9 out of the previous 10 observations I assign a value 0.9 to the platform genre.20

There are 23 unique genres, 22 unique themes, and 6 unique game modes in the IGDB data, so

at each observation a streamer’s type is the 54-vector (including no genre, no theme, and no game

mode) of prior frequencies. I can then compute the correlational coefficient between the 54-vector

of genres for each game and the 54-vector of historical frequencies for each streamer to obtain a

single number on the interval [0, 1] representing the “alignment” between streamer and game at a

specific time period.

Some streamers brand themselves as being “variety” streamers; these streamers build their

followings by playing all sorts of wacky games. For such variety streamers, how similar current

games are compared to games played previously may not be a great proxy for alignment since

these streamers intentionally look for novelty. To address this concern, I subset streamers who

have played less than 12 unique video games, which is the 25th percentile (see Table 1) of unique

games played across all streamers in my data. Their revealed preference for just a few games

strongly speaks to what they enjoy and what their audience expects from them. The metric is

more suitable with my focal subset of streamers where good sponsor alignment is more precisely

defined by historical preferences.

20A game can be a part of multiple genres
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Figure 4: CDFs of genre+theme+mode similarity by disclosure level, streamers with ≤ 12 unique
games played

Figure 4 plots the cumulative distribution function of genre similarities by disclosure level. The

green CDF line is close to the red CDF line meaning that among this subset of streamers, the

profile of games played during high disclosure streams is very similar to the profile of games played

during organic streams. The blue CDF line is far away from either the red or green CDF, so games

played during low disclosure streams seem different from organically chosen games. Most of the

mass is towards the right, indicating that high disclosure sponsored games are quite similar to the

historical composition of games played by streamers. Meanwhile, the blue CDF representing low

disclosure games has much more mass to the left, implying that streamers try to hide dissimilar

sponsors. I interpret this finding as evidence for selection into high disclosure on brand alignment.

Obfuscating poorly aligned games makes sense - streamers can hide poorly aligned sponsors to

the fullest extent they are allowed to instead of obviously appearing as a “sellout.” When the

sponsored game is better aligned, streamers are more willing to prominently disclose because the

game is better suited to their expertise and/or their audience’s taste.

4.3 Causal effects of disclosure and the decreasing differences condition

The separating equilibrium dictates that the reputational costs of high disclosure is higher for

low types than for high types. Here, I measure just how much larger these high disclosure costs are

for low types. Influencer reputation, like a sponsor’s “type,” is an unobservable object, so I use the

change in the number of followers as a proxy for reputational costs of sponsorship and disclosure.

However, gaining followers is not a cost, so c(j) = negative new followers.

The separating equilibrium induces selection on unobservables that bias standard OLS regres-
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sion measurements of the costs of high and low disclosure. For example, because θH types only

choose high disclosure, the OLS estimate of the effect of high disclosure on the number of followers

will be biased upwards since low types (with higher reputation costs) never choose high disclosure.

Mathematically, failure to observe the type θ of the sponsor in Equation 11 leads to the disclosure

decision being correlated with the error term.

To get around these challenges, I make use of the instrumental variables (IV) method. Intu-

itively, the goal of the IV method is to answer the question, “what happens if low types were forced

to disclose?” I instrument for the disclosure decision using the instrument: how often is a sponsored

game disclosed by other influencers within the past thirty days. That is, for influencer i playing

game g at day t, the instrument is:

zit =

∑
j 6=i
∑

τ=t−30,...,t−1,tHDjτ ∗ adjτ ∗ 1{gjτ = git}∑
j 6=i
∑

τ=t−30,...,t−1,t adjτ ∗ 1{gjτ = git}
(12)

The instrument tries to proxy the directive to disclose from a game developer by looking at the

behavior of other influencers who may be in the same marketing campaign. Relevance for this

instrument comes from the idea that the disclosure decision may be exogenously given by the

developer for a particular campaign. Certain developers may be afraid of regulation enforcement

or are just more likely to mandate disclosure for whatever reason. The more frequently other

influencers have disclosed in the last thirty days, the more likely the focal influencer has also

been told to disclose by the developer. The exclusion restriction comes from the idea that game

developers are not leveraging disclosure as a lever that affects campaign performance. The same

game would have different “alignment” across influencers, and developers simultaneously work

with too many influencers to dictate which individuals signal and which do not signal. Therefore,

some influencers are forced to prominently disclose a low type game which in the absence of the

developer’s instructions would have been diminished.

One threat to exclusion may be that marketing efforts can affect viewership outside of disclosure.

I attempt to control for this threat by including a control that counts the number of instances a

game is observed in the past week, the idea being that any other marketing efforts would be

captured by a collective supply-side response from streamers to cash in on the temporary increase

in profitability.

Under very restrictive assumptions like homogeneous treatment effects (Blandhol et al., 2022),

we can interpret the coefficient on “Game dev spon hi. disc.” in column 4 of Table 4 as the effect

of high disclosure on reputation overall. This interpretation means that the IV coefficient is some

weighted average of c(HD|θ) over the distribution of θ in the population. Recall that both the

stylized model and the regression specifications restrict θ to be discrete with limited types. A final

assumption on c(LD|θ) is needed to make the following claim:

Proposition 1 Under the discrete distributional assumption on θ, strict assumptions on the IV

coefficient interpretation, and an assumption that c(LD|θH) = c(LD|θL), the decreasing differences

condition is satisfied if βIVd > βOLSd . An increasing differences condition is satisfied if βIVd < βOLSd .
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Y: Log. Avg. conc. viewers Y: IHS New Followers Y: High disclosure
OLS IV OLS IV

Game dev spon hi. disc. 0.057 0.212 −0.035 −1.483 -
(0.018) (0.129) (0.088) (0.625) -

Same-week streams 0.020 0.018 0.175 0.196 -
(0.006) (0.006) (0.032) (0.031) -

Inst: % other disclose - - - - 0.24
- - - - (0.03)

R2 0.895 - 0.607 - 0.37
nobs 12003 12003 12003 12003 12003

Influencer Characteristics Y
Game Characteristics Y
Stream Characteristics Y
Influencer FE Y
Quarter-Year FE Y
Game developer FE Y
Other Time FE Y

First stage partial F: - - - - 63.5

Table 4: IV Regressions; standard errors in parenthesis clustered at influencer level. Influencer characteristics include number
of followers and most frequently played game. Game characteristics include game age, genres, themes, and game modes. Stream
characteristics include stream length, drops, tournament, championship, giveaway, charity, subathon, and first game of the day

See Appendix A.4 for the proof.

Comparing the third and fourth columns in Table 4 where the dependent variable of interest

is new followers, we observe that βIVd < βOLSd , implying increasing differences. Costs are negative

new followers, so we have decreasing differences in c(·). Hence, the decreasing differences condition

is satisfied.

Another characteristic of a separating equilibrium with signaling high types is that when low

types deviate to high disclosure, the initial off-path equilibrium response from followers generates

a viewership increase. Using the IV regression, I show that this phenomenon exists in my setting.

Column 2 of Table 4 shows that the unbiased measurement of high disclosure on viewership is

positive when considering all types. The point estimate is even larger than the OLS estimate in the

column 1, which is measuring the viewership effect when only θH types are disclosing in equilibrium.

Using a similar line of reasoning as above, I can conclude that there is a positive high disclosure

viewership response for low types. This positive measurement can be attributed to consumers’

belief in equilibrium that high disclosure streams are high types. So when off-path equilibrium

beliefs have not updated, high disclosure low types get lumped together with the high types, and

viewers flock to the stream as if it were a high alignment sponsored segment. The IV regression

exactly captures the off-path equilibrium outcome, as it recovers the effect of high disclosure on

viewership without changing any other features (like beliefs) in the environment. From the follower

change analysis, I even observe the punishment that viewers bring by not following/unfollowing

streamers who broadcast high disclosure, low type sponsors.

From these descriptive exercises, I conclude that disclosure in my setting is not happenstance;

influencers and brands carefully consider when to use disclosure to leverage advertising mechanisms

like signaling. This makes my setting different fundamentally different from pooling equilibrium
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placement settings like TV shows and radio. As I will show in section 7, disclosure policies will

affect the separating equilibrium setting differently than what Coase (1979) predicted in radio, a

pooling equilibrium setting.

4.4 Influencers are forward looking

Streamers have provided anecdotal evidence claiming that game developers are willing to pay

up to $1 per viewer for creating sponsored content. For a 10,000 ACV streamer, this translates

to anywhere between $100 to $10,000 an hour, with offers more likely to be on the higher side

of the range. Comparatively, income from donations, Twitch ads, and subscriptions total around

$20,000 per month for a 10k ACV streamer.21 Sponsored content clearly pays much better than

that of organic content, yet only 1.8% of stream-game observations are sponsored. Conversations

with talent management agencies reveal that the most popular streamers (such as the ones studied

in this paper) generally have an abundance of sponsors to choose from, and that the majority of

potential sponsors are rejected. If streamers only care about maximizing short-run profits and are

truly myopic, the optimal decision would be to accept more of these sponsors and create sponsored

content every day.

5 Model

I develop a structural model that extends the static, one period signaling model into an infinite

horizon dynamic discrete choice model. The goal of the model is to quantify the impact of a strict

disclosure counterfactual policy, while also staying as true to the theoretical model as possible. The

timing of the model is discussed below.

My model takes place in a discrete time; in each period t, influencer i makes a decision on what

to stream, if anything. A sponsored game exogenously arrives each period carrying a brand match

value, θ, which the influencer observes but is unobservable to the econometrician. This is analogous

to the “type” in the signaling model and can be thought of as a hidden/unobserved state in the

structural model. In the signaling model, the influencer is bound to the θ realized exogenously,

which could be a sponsored type (θH or θL) or the organic type (θ0). Here, the organic type is

always available to the influencer, and they have the decision between whichever sponsored type

arrives and the organic type. I am implicitly assuming that an influencer always has a sponsor to

choose for each stream in addition to organic content. This assumption seems somewhat reasonable

given that I am studying more mature streamers who can always pick up a low alignment mobile

game to advertise. With the sponsor in hand, an influencer has four content choices they can take,

j ∈ {HD,LD,N, 0}, corresponding to high disclosure sponsor, low disclosure sponsor, normal

stream, and no stream respectively.

After the content choice is made, viewership is realized as consumers click into streams. If

21All of these numbers are from a DisguisedToast video, where some finances of streaming are discussed: https:

//www.youtube.com/watch?v=6m5P_n5njCQ
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j = HD, I assume that consumers know that sponsored content is being broadcasted. If j = LD or

j = N , I assume that consumers do not know whether sponsored or organic content is being chosen

prior to clicking in. Rather, consumers form rational expectations over the type of the sponsor θ

and the sponsored/organic nature of the content. I introduce a parametric form for viewership v(·)
which is dependent on θ, endogenous, and exogenous state variables. The belief about the type

of content and the nature of the sponsor affects v, which then enters into the influencer’s utility

function and affects choices. I augment the utility function with additional variables to help the

model rationalize influencer choices at different states.

After watching, viewers decide to follow or unfollow the influencer. If the stream was sponsored,

then the viewers realize the true θ before making the follow decision. This follower transition is

structural analogue to the theoretical “reputation” costs c(j|θ). By defining a parametric transi-

tion function for followers, the endogenous state, I make choices j and types θ affect the follower

transition, thereby changing influencers’ future payoffs and choices.

5.1 State Variables

5.1.1 Exogenous Variable Selection

The descriptive regressions leveraged many covariates such as stream length, game dummies,

and more. A dynamic model cannot feasibly incorporate so many variables, as the decision maker

must integrate over all possible combinations of these covariates in future periods to calculate their

value function. To deal with such issues, I perform two simplifications. First, I aggregate the

stream-game level observations up to a daily level since I do not need stream or game specific

characteristics anymore. I sum up the length of stream for a day and let the sponsorship (high

disclosure) indicator equal 1 if any stream-game combination during the day was a sponsored stream

(prominently disclosed). Second, I simplify my universe of covariates into two exogenous states and

one endogenous state. Endogenous states are affected by the influencer’s decisions at each period;

the probability of reaching a state in future periods depends on decisions made today. Exogenous

states are not affected by the influencer’s decisions in previous periods; states are realized with the

same probability each period, regardless of past actions.

The two exogenous states are xit = (θit, hit), where θ is the unobserved alignment and h is the

number of hours streamed. Alignment θ is assumed to be discrete; it is either a high match value

θH with probability pH or a low match value θL with probability pL = 1− pH . I assume that this

arrives exogenously each period for estimation purposes.

I restrict h to be on a discrete grid on [1, 15] with increments of 1. In my data, over 95% of

daily observations are live for under 15 hours. The empirical distribution for daily hours streamed

given HD,LD or N are fairly similar regardless of content choice. The number of hours streamed

is independently drawn each period from the empirical distribution.
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5.1.2 Endogenous State Variable

I assume that the endogenous state variable f is discretized on a grid from 10.5 to 15.4 with

an interval of 0.1. f is the number of log followers I observe in the data. Much of the sample

lies in this range. Discretizing the data helps compute conditional choice probabilities and value

functions. To obtain CCPs/value functions for any value not on the grid, I use a gridded linear

interpolation. The transition of f between two time periods takes on the form:

fi,t+1 = log

(
exp(fit) + ψj(xit, fit, ηit)

)
(13)

ψj(·) is a function that computes the change in followers at time t, and η is a mean zero i.i.d

shock to follower change that is unobserved to the econometrician and to the influencer before the

decision is made. I impose a functional form on φ:

ψj(xit, fit, ηit) =

sinh

(
ω0 + ωf fit︸︷︷︸

followers

+ωh hit︸︷︷︸
hours

+ωa 1{j = HD,LD}︸ ︷︷ ︸
ad

+

(ωd + ωdθθit) · 1{j = HD}+ ηit

) (14)

where sinh is the hyperbolic sine function.22 Equation 14 is the model version of the OLS regressions

in columns 2 and 4 of Table 3, where the change in followers on the left hand side of the equation

is in terms of arcsinh. I use sinh to invert IHS followers change into levels. Followers can never be

negative, so I bound f below by 1. The follower change from no stream, φ(0, ·), is normalized to

zero. Crucially, φ depends on the hidden state, θ, which affects the follower transition only when

the influencer chooses high disclosure. If the influencer chooses HD with a poorly aligned sponsor

θL, then only ωd is realized. If the influencer chooses HD with a good alignment sponsor θH , they

get a follower signaling boost ωdθ in addition to ωd.

5.2 Utility

Each influencer has the indirect utility function

uijt = rj(fit)︸ ︷︷ ︸
util of streaming

+ αj(fit)︸ ︷︷ ︸
util of ad

+βvvj(fit, hit)︸ ︷︷ ︸
viewership util

+εijt (15)

where hit is the log stream length, an exogenous state. fit is the number of log followers the

influencer has at time t. vj(f, h) is log average concurrent viewership (ACV)23 conditional on

action j. This number is observed in the data, but I will assume a functional form to allow us to

conduct counterfactual simulation. βv converts ACV into utility terms. We can interpret βvvj(·)
22sinhx = ex−e−x

2
23Throughout this section I may use the term “viewership,” but that strictly refers to ACV in this setting
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as the utility equivalence of revenue earned from streaming, which includes donations and Twitch

ad income discussed in Section 2. αj(·) is the utility from advertising, which I allow to depend on

the follower state f , and rj(·) is the utility of streaming which also depends on f . εijt is a nested

logit utility shock, where the sponsored content decisions {HD,LD} share a nest. Organic content

and no stream are each in their own nests.

αj is equal to 0 when j ∈ {N, 0} and takes on the linear functional form:

αijt = α0 + αθθit + αffit (16)

for j ∈ {HD,LD}. This functional form assumption comes from conversations with various in-

fluencer management agencies. As mentioned in Section 2.1, streamers are offered compensation

based on a primitive pricing “calculator.” I allow the baseline level of utility for advertising to

change depending on the brand alignment θ. The idea is that streamers should be happier playing

video games they are well aligned with. There are various nuances like discounts for long-term

sponsorships that we abstract away from. It is important to note that θ affects the utilities of both

sponsorship choices here, unlike in the follower transition.

Similarly, rj = 0 if j = 0. Else,

rijt = r0 + rffit (17)

rj changes the attractiveness of the outside option as a function of the number of followers. In the

data, streamers choose the outside option with a similar frequency whether they are small or large.

rffit is necessary to counteract the fact that larger streamers will command a higher ACV and thus

obtain more viewership utility through βvv(·). Without this functional form, the outside option

gets less attractive the larger the streamer, which is inconsistent with the data. Another reason

why this may be a reasonable functional form is that more popular streamers may embark on other

business ventures or simply want to enjoy their celebrity status, both of which make streaming less

attractive.

Finally, I parameterize vj(·) as the following linear model:

vj(hit, fit, θit) = φ0 + φh hit︸︷︷︸
hours

+φf fit︸︷︷︸
followers

+φa1{j = LD}+ φd1{j = HD}+

φl
∑
j∈J̄

Pr(θ̆L|j)× 1{j̄ = j}+ φh
∑
j∈J̄

Pr(θ̆H |j̄)× 1{j̄ = j}+ νijt
(18)

This linear ACV model captures the key effects that stream length, disclosure, and followers have

on ACV and is the analog to the OLS regressions in columns 1 and 3 of Table 3. For this brief

viewership subsection, let terms with a ¯bar indicate what is observed or believed prior to clicking

into a stream, while an ˘accent indicates what is observed after clicking into a stream. For example,

the term j̄ represents the content choice that followers and potential viewers observe prior to clicking

into the stream. Because low disclosure and organic are indistinguishable prior to clicking in, j̄
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represents three choices: j̄ ∈ {HD,LD + N, 0} = J̄ , where LD + N is represents the disclosure

labeling not being present prior to clicking into the stream. The belief that a sponsored stream

with alignment θ is the content broadcasted after observing choice j̄ prior to clicking into a stream

is denoted P̄ r(θ̆|j̄). Potential viewers form these expectations before clicking into the stream under

a rational expectations framework.24 Using Bayes rule, we can rewrite this belief as:

Pr(θ̆|j̄) =
Pr(j̄|θ̆)Pr(θ̆)

Pr(j̄)
(19)

I show in Appendix A.5 that all terms in Equation 19 can be written using conditional choice

probabilities and the distribution of θ. Furthermore, both the conditional choice probabilities and

the distribution of θ are observed in the first stage of estimation (see Section 6), which makes

computing these beliefs straightforward.

To formalize the problem, let the influencer maximize the expected discounted sum of future

utilities:

max
{j1,j2,...}

E
( ∞∑
t=1

βt−1uijt(fit, hit, θit)

)
(20)

The associated Bellman equation is:

V (fit, hit, θit) = max
jit

(
uijt(fit, hit, θit) + βEV (fit+1, hit+1, θit+1)

)
(21)

and the discount factor β is set at β = 0.995.

6 Estimation

The main challenge in the estimation is that brand alignment, θ, is observed by the streamer

but not the econometrician. θ affects ACV vj , a per period output, and the follower transition

ψj . Therefore, the standard conditional independence assumptions are violated.25 This precludes

simpler dynamic discrete choice estimation methods as in Rust (1987) or Hotz and Miller (1993).

The nested fixed point algorithm is computationally intensive, while standard two-step methods

cannot be used since unobserved states affect choices and transitions.

Instead, I proceed using the two step method described in Section 6 of Arcidiacono and Miller

(2011), where in the first step I estimate the conditional choice probabilities jointly with the distri-

bution of unobserved θ, viewership parameters (γv = [φ, ν]), and the follower transition (γf = [ω, η])

using an expectation maximization (EM) algorithm. In the second stage, the flow utility parameters

are recovered using forward simulation as in Hotz et al. (1994) and Bajari et al. (2007).

24More specifically, I assume viewers know the conditional choice probabilities the influencers face, but do not
observe the type θ prior to the influencer making a decision.

25see Aguirregabiria and Mira (2010), assumptions CI-X and CI-Y
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The full likelihood of observing the data has three components:

L = Likelihood of viewership× Likelihood of follower transition× Likelihood of choices

However, unobserved brand alignment affects all three components of the likelihood, so joint es-

timation of the ACV, follower transition, and choice is computationally burdensome. For each

fixed candidate vector of parameters, the value function must be iterated to convergence. To help

reduce computation complexity, I use the i.i.d nature of θ and use the two step CCP estimator in

Arcidiacono and Miller (2011) which will be described below.

6.1 The AM two-step estimator

6.1.1 First stage

I now describe the first stage of the Arcidiacono and Miller (2011) estimator. Let γ(1) =

[γ
(1)
v , γ

(1)
f ] be the initial guess of viewership and follower transition parameters. Let p(1) be the initial

guess of conditional choice probabilities. Lastly, let π(1)(θ) be the intial guess of the distribution

of the unobserved state, θ.

At iteration m, update the following objects in the specified order:

1. Compute the conditional probabilities of being in each unobserved state, q
(m+1)
iθt

q
(m+1)
iθt︸ ︷︷ ︸

N×|θ|×T

=
L

(m)
it (θit = θ)

L
(m)
it

(22)

where Lit is the full likelihood of the data on i at time t, and Lit(θit = θ) is the joint likelihood

of the data and unobserved state θ occurring at time t. These likelihoods are evaluated

at the current iteration of parameters γ(m), distribution of unobserved states π(m)(θ), and

conditional choice probabilities p(m). Because of the exogenous θ assumption, this is a simple

calculation and should not run into numerical underflow or other instability issues.

2. Next, I compute the distribution of the unobserved states π(m+1)(θ):

π(m+1)(θ) =
1

NT

∑
i

∑
t

q
(m+1)
iθt (23)

3. With q
(m+1)
iθt computed, the conditional choice probabilities can be updated using the data:

p
(m+1)
jt (f, θ) =

∑
i

∑
t dijtqiθtI(fit = f)∑

i

∑
t qiθtI(fit = f)

(24)

4. Now the maximization step; the updated viewership and follower transition parameters
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γ(m+1) = [γ
(m+1)
v , γ

(m+1)
f ] maximizes the lower bound of the likelihood:

γ(m+1)
v , γ

(m+1)
f = arg max

γv ,γf

∑
i

∑
t

∑
θ

∑
j

q
(m+1)
iθt

× dijt
[

log(p
(m+1)
jt (fit, θit)) + log(nfjt(xit, fit, θit|γf ))

+ log(vjt(xit, fit, θit|γv))
] (25)

I iterate the steps above until convergence, which is reached if the relative change in the maximized

log likelihood from equation 25 between sequential iterations is less than 1e−6.

6.1.2 Second stage

In the second stage, the parameters from the flow utility (equation 15) are recovered using

forward simulation (Hotz et al., 1994; Arcidiacono and Miller, 2011). Starting from each state-

action pair (including unobserved states), the path of all state variables and decisions are simulated

significantly out into the future. The discounted sum of utilities is obtained from each path, and

the conditional value function is computed by taking the means over all paths starting at each

state-action pair. Once the conditional value functions are obtained, one can compute the implied

conditional choice probabilities given the T1EV assumption in the flow utility. A minimum distance

estimator can be constructed between the CCP from the first stage and the simulated CCP from

the second stage.

Arcidiacono and Miller (2011) provides a method of moments estimator to recover the utility

parameters, given the T1EV assumption on the unobservables. For the organic stream choice, N ,

difference between its choice-specific value function and the outside option choice 0 is:

ṽN (fit, θit)− ṽ0(fit, θit) = log(p̂N (fit, θit))− log(p̂0(fit, θit)) (26)

ṽj(fit, θit) are the simulated conditional value functions from the second stage, and are a function

of the flow utility parameters. p̂j(f, θ) is the conditional choice probability of choice j in state (f, θ)

from the converged first stage estimation. For either of the advertising choices, {HD,LD}, Lemma

3 in Arcidiacono and Miller (2011) implies the following relationship:

ṽj(fit, θit)− ṽ0(fit, θit) =

ρnest log(p̂j(fit, θit)) + (1− ρnest) log(p̂HD,(fit, θit) + p̂LD,(fit, θit))− log(p̂0(fit, θit)),

j ∈ {HD,LD}

(27)

where ρnest is the nesting parameter measuring correlation between the nested logit shocks for the

sponsored content choices. The moment estimator is formed by stacking the J − 1 mappings for

each observed and unobserved state:
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vHD(f0, θ0)− ṽ0(f0, θ0)− (ρnest log(p̂HD(f0, θ0)) + (1− ρnest) log(
∑
j∈{HD,LD} p̂j(f0, θ0))− log(p̂0(f0, θ0)))

vLD(f0, θ0)− ṽ0(f0, θ0)− (ρnest log(p̂LD(f0, θ0)) + (1− ρnest) log(
∑
j∈{HD,LD} p̂j(f0, θ0))− log(p̂0(f0, θ0)))

vN (f0, θ0)− ṽ0(f0, θ0)− (log(p̂N (f0, θ0))− log(p̂0(f0, θ0)))

vHD(f0, θ1)− ṽ0(f0, θ1)− (ρnest log(p̂HD(f0, θ1)) + (1− ρnest) log(
∑
j∈{HD,LD} p̂j(f0, θ1))− log(p̂0(f0, θ1)))

...

vHD(f1, θ0)− ṽ0(f1, θ0)− (ρnest log(p̂HD(f1, θ0)) + (1− ρnest) log(
∑
j∈{HD,LD} p̂j(f1, θ0))− log(p̂0(f1, θ0)))

...


=



0

0

0

0
...

0
...


(28)

Where f0 is the first follower state on its ordered grid, θ0 is the first unobserved state on its

ordered grid, etc. Minimizing the squared weighted sum of the above vector with respect to the

utility parameters recovers the remaining structural parameters.

6.2 Identification

Table 5 provides a summary of variation in the data that allows for the identification of param-

eters in my structural model. Here, I will provide a more detailed discussion. I will first discuss

identification of first stage parameters, which include the state transition parameters ω from Equa-

tion 13 and the viewership parameters φ from Equation 18. First, I will focus on just the state

transition parameters. The number of new followers obtained in each period, nfit, is observed in

the data, and for every i, t observation, there is variation in hours streamed hit, follower count

fit, and the choice decision j. Given the linearity assumptions, the parameters in the first line of

the equation are easily identified. The unobserved state is assumed to be observed during the EM

algorithm step, so we can identify the coefficients related to high disclosure.

The viewership equation shares many similar coefficients as the state transition, but is differen-

tiated by the belief terms φl and φh. In the EM-algorithm, the conditional choice probabilities are

nonparametrically estimated and assumed to be observed in the maximization step. This observed

variation for every i at every state f allows me to compute beliefs using a rational expectations

assumption, generating the variation to identify these parameters.

The distribution of θ is identified by correlation between disclosure choice and new followers,

as well as the linear functional form and distributional assumptions on nf and v. The intuition

is as follows: if alignment has positive synergy with disclosure, then high disclosure observations

will on average have more positive follower change metrics than a typical low disclosure sponsored

stream. If a high disclosure observation fits this description, then the EM step will place a large

posterior probability on the observation being in the well-aligned state. The frequency with which

such observations occur gives the variation necessary to estimate the frequency that a well aligned

sponsor arrives. The Bernoulli distributional assumption on θ means a single parameter defines the

distribution of the unobserved state.

Identification of second stage utility parameters are discussed next. Utility parameters governing

the attractiveness of streaming (Eq. 17) are discussed in Section 5. To recap, streamers attract more
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Parameter Interpretation Size Variation

Panel A: First stage parameters

φ
Viewership

(ACV)
parameters

5 Observed ACV over i and t

ω
Follower

transition
5 Observed change in followers over i and t

φd, ωd, ωdθ

Parameters
related to
disclosure

3
Distributional assumption on error terms (Eq. 14, 18) +

Variation in observed ACV/follower transition conditional
on HD or LD choice (θ assumed observed in EM step)

φl, φh

Beliefs
affecting

viewership
2

Variation in CCPs at each f + rational expectations
assumption

p(θ)
Unobserved

state
distribution

1
Correlation of choice and new followers + functional form
assumption on follower change (Eq. 14) + distributional

assumption on θ

CCPs
Conditional

choice
probabilities

400
Identified by choices in each bin (j × f × θ) and long panel

of data (see Arcidiacono and Miller (2011))

Panel B: Second stage parameters

α
Sponsor utility

parameters
2 Sponsorship frequency conditional on follower states

αθ

Utility
parameters
related to
alignment

1
Differences in first stage conditional choice probabilities

over the unobserved state + functional form of Equation 16

r
Streaming

utility
parameters

2 Streaming frequency conditional on follower states

βv
ACV to utility

conversion
1

Correlation between CCPs and ACV across the streaming
extensive margin (stream vs no stream) and on the

sponsorship intensive margin (high vs low disclosure)

ρnest
Sponsorship

nest coefficient
1 Within nest shares across different state variables

Table 5: Identification of Choice Model Parameters in Data
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followers as they grow, which translates into higher ACV. More ACV means more money and more

utility for streamers, yet I observe that the share of the outside option of no stream remains relatively

constant. The consistent quality of the outside option regardless of state identifies the parameters. I

observe that larger streamers tend to advertise more, which increases the attractiveness of choosing

one of the sponsorship choices (j ∈ {HD,LD}). This allows me to identify some advertising utility

parameters in equation 16. The advertising alignment utility parameter (αθ) is identified by the

difference in the first stage CCPs across the hidden states. Alignment affects both high and low

disclosure utility, but only affects high disclosure observables - ACV and follower change - so the

difference in low disclosure frequencies between the hidden states identifies the parameter. βv is

identified by the correlation between CCPs and ACV on the extensive margin of streaming (stream

vs no stream) and the intensive margin of sponsorship (high vs low disclosure) conditional on θ.

On the extensive margin of streaming, if streamers with higher ACV choose stream more, then we

know that the direction of this parameter must be positive. The intensive margin of sponsorship

affects ACV but no other component of utility, so repeated observations of high vs low disclosure

conditional on θ, followers, and hours streamed pins down the level of βv.

Lastly, ρnest is the nesting coefficient for the nested logit errors in the utility function (Eq. 15).

In a static nested logit model, this parameter is identified by variation in the conditional shares

of the within-nest goods over markets. In my single-market infinite horizon dynamic model, this

variation cannot exist. There does exist variation of within-nest shares over different state variables,

and this variation is enough to identify the nesting parameter.

7 Results and Counterfactuals

7.1 Estimation Results

Now I discuss the estimation results from the structural model. Table 6 presents the coefficients

from the first stage estimation, and Table 7 presents estimated utility parameters from the second

stage estimation.

New followers Estimate Std. error

ω0 -5.03 0.96
ωa -1.09 0.28
ωd -7.53 2.01
ωdθ 8.11 1.90
ωf 0.63 0.08
ωx 0.59 0.11
ση 3.52 0.07

ACV Estimate Std. error

φ0 -1.41 0.29
φa -0.05 0.06
φl -2.21 3.09∗

φd -0.05 3.11∗

φh 0.46 3.15∗

φf 0.67 0.03
φx 0.11 0.05
σν 1.00 0.02

P(θ = θH): 0.005 [0.003, 0.009]

Table 6: First stage new follower and viewership parameter estimates, bootstrap standard errors
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New followers Estimate Std. error

α0 -4.83 1.02
αθ 3.53 0.70
αf 0.09 0.08
r0 0.07 0.28
rf -0.00 0.10
βv 0.12 0.14
ρnest 0.04 0.03

Table 7: Second stage utility parameter estimates, bootstrap standard errors

Estimates from the first stage are consistent with the descriptive results and capture character-

istics of a separating equilibrium. I first discuss the follower transition. The coefficient ωa measures

the effect that low disclosure has on followers, assuming that some viewers have figured out the

sponsored nature of the low disclosure content.The negative sign on the coefficient indicates that

creating sponsored content overall has a negative effect on follower change compared to organic

content. Prominently disclosing a low quality brand (ωd) creates a massive hit to the number of

followers recovered. However, disclosing a good match (ωdθ) ends up increasing the net followers

drastically versus a bad match. The direction of such effects are consistent with the findings from

the IV regression (Table 4), supporting the separating equilibrium prediction that high types have

much lower reputation costs than low types. The large magnitudes can partially be explained by

the fewer covariates in the structural model as well as the behavior of the IHS function, which takes

on a much steeper slope near 0 and behaves similarly to the log function further out. Many spon-

sored content streams end up with new follower counts around zero, so sponsorship and disclosure

decisions appear to have a very large impact.

ACV coefficients φ follow a similar pattern as follower coefficients. The difference between

the two specifications lie in the effects of beliefs, whose coefficients are represented in the ACV

equation by φl and φh.26 The former coefficient should be interpreted as the effect of θL sponsors

on viewership, if viewers knew for certain that a sponsor was θL type before clicking into the stream.

The latter represents the effect of θH sponsors on viewership, if θH types were known for certain by

viewers. The negative φl coefficient implies that as the belief that a sponsored game is θL increases,

viewership of the stream drops. Conversely, as the belief that θH increases, the viewership realized

by the stream increases. In the signaling equilibrium, the belief that θ = θH when j = HD is

chosen is equivalent to one - the structural model predicts an viewership increases of 0.41 log points

as a result of the signaling,27 which is directionally consistent with the reduced from results in

Tables 3 and 4.

The distribution of the unobservable state space θ indicates that a well-aligned sponsor arrives

26Standard errors on these coefficients are large because some state-action pairs related to high disclosure are
sparse. Therefore, bootstraps are not sampling all state-action combinations, leading to large standard errors for
parameters relying on rational expectation beliefs. Standard errors remain a work-in-progress.

27Equivalent to φd + φh
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just about 0.5% of the time, or once every 200 days.28 It is difficult for a sponsor to find a well-

aligned influencer, and vice-versa. As a common sense check, about 1.6% of the aggregated daily

observations29 are sponsored in the data. If we believe that well-aligned sponsors are highly corre-

lated with sponsored content production, then the similar magnitudes of the structural parameter

and the summary statistic somewhat reassure concerns about mismeasurement of the unobserved

state.

The utility parameters from the second stage imply value functions and conditional choice

probabilities derived from the nested logit assumption. Figure 5 shows the CCPs of the sponsored

content choices, high and low disclosure. Figures 5a and 5c represent CCPs when θ = θL; Figures

5b and 5d are for states θ = θH . As expected, low disclosure is more common than high disclosure

in the θL state. However, as the influencer grows, some find it profitable to choose high disclosure

for θL types because the follower loss is offset by the viewership gain.

High disclosure occurs much more frequently when θ = θH ; sponsorship as a whole is much

more frequent when there is a good brand match. In this state of the world, smaller channels want

to demonstrate their legitimacy and value by obtaining these “well-aligned” sponsors and show

them off, while larger influencers are more likely to choose low disclosure since some θL types are

contaminating the high disclosure signal.

Lastly, ρnest being near zero suggests strong correlation between the utility shocks of high and

low disclosure. This makes sense as they are the two sponsored content choices. As mentioned in

Section 2, brands generally do not require streamers to disclose, so these unobserved payoffs offered

to the streamers for sponsored content should be similar irrespective of their disclosure decision.

In the data, about 1.59% of observations are sponsored streams. In simulations, the first stage

parameters and the CCPs estimated above imply 1.54% of observations are sponsored streams.

The model also does well in capturing the high and low disclosure distributions within sponsored

streams. In the data, 13.6% of all sponsored streams have high disclosure. The model implies that

15.5% of sponsored streams are prominently disclosed.

7.2 Counterfactuals

I provide a summary table of the counterfactuals conducted below in Table 8. I describe how I

operationalize these counterfactuals and discuss the results below.

Removing the ability to obfuscate

For this counterfactual I remove the choice of low disclosure from a streamer’s choice set. This

reflects the policy change of forcing high disclosure and removing avenues for obfuscation. An

implementation of this policy could be some salient disclosure label, which platforms like Youtube

have already implemented. Figure 6 plots the conditional choice probabilities of choosing sponsored

streams in the current policy environment, as well as that in the counterfactual world where j = LD

28This implies that the median influencer in my data will see 2-4 well-aligned sponsors in the data period.
29Compared to 1.8% of stream-game observations
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(a) CCP of Sponsored choices, θ = θL (b) CCP of Sponsored choices, θ = θH

(c) CCP of other choices, θ = θL (d) CCP of other choices, θ = θH

Figure 5: Conditional Choice Probability Plots

Sponsored % Relative ∆ from baseline Relative ∆ from CF1

Data 1.586% - -

Baseline simulation 1.538% - -

CF1: Force high disclosure 1.313% θL : -16.2% -
θH : -2.5% -

CF2: Full information 1.308% θL : -16.8% θL : -0.7%
θH : -0.8% θH : 1.8%

Table 8: Comparison of counterfactuals

34



(a) CCP of Sponsored choices, θ = θL (b) CCP of Sponsored choices, θ = θH

Figure 6: Counterfactual 1: Removing Low Disclosure - Conditional Choice Probability Plots

is removed from the choice set. The effect of the counterfactual policy on other organic and no

stream is negligible at every state. Overall, I predict that the amount of sponsored content will drop

to 1.31% of observations, down from 1.54%. Relatively, this means that the amount of sponsored

content will decrease by 14.6 percent.

I break down the effect of the counterfactual policy by the brand alignment state. In Figure

6a, we see the biggest impact of the policy; the amount of sponsored content when the brand

alignment is low (θ = θL), decreases the most when the influencer is relatively small. This is

because smaller influencers cannot afford to take the reputation hit that larger influencers can

afford, so they stop broadcasting θL sponsored content. Consequentially, sponsored content has a

16.2% relative decrease in frequency in this state. The counterfactual policy has a smaller effect

on sponsored content at high brand alignment states (θ = θH); the relative decrease between the

status quo and the counterfactual is just 2.5%. The decrease can be explained because θL types are

forced in with θh types under high disclosure, “contaminating” the ability to signal. Hence, almost

all of the counterfactual policy’s effect is driven by streamers who reject poorly aligned sponsors

they otherwise would have accepted in absence of the policy.

Ex-ante, it is unclear how a strict disclosure policy affects viewership on the platform. When

low disclosure sponsored content is banned, some streamers substitute to the outside option of no

stream and some substitute to organic content. The former should weakly decrease the amount

of viewership on the platform, but the latter should improve viewership as better content attracts

more viewers directly and also through the follower state transition. Without modeling followers’

demand and lacking information on followers’ outside option, I cannot make definitive statements

about viewing behavior. By assuming that all viewers are homogenous so that ACV captures

all viewership behavior (e.g. all viewers watch the same length of time), the change in average

viewership on the platform after the policy is implemented is a positive 2.7%, and the viewership

hours increase is a positive 6.7%.

If one believes that sponsor alignment is positively correlated with vertical stream quality,
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then the results of this counterfactual refutes efficiency arguments for nondisclosure (Coase, 1979).

By decreasing the number of poorly-aligned sponsors, we improve consumers’ experience on the

platform because content quality gets better. This creates an interesting dilemma for the platform,

as stricter disclosure policies may irritate influencers but give consumers fewer poorly aligned

streams to navigate.

Full information treatment

In this counterfactual, I assume that some oracle exists in the market who can perfectly reveal

the brand alignment of all sponsors to followers at the beginning of each period. Influencers no

longer choose between high and low disclosure; instead, they choose whether or not to run sponsored

content given θ.

(a) CCP of Sponsored choices, θ = θL (b) CCP of Sponsored choices, θ = θH

Figure 7: Counterfactual 2: Full Information Treatment - Conditional Choice Probability Plots

I plot the CCPs of sponsored content in the θL state in Figure 7a and the θH state in Figure

7b. Overall, the amount of sponsored content decreases by 14.9%, very similar in magnitude to the

forced high disclosure percentage (-14.6%). The main difference comes from the composition of θL

vs θH sponsors. The results in the θL state are similar as the results from forced high disclosure

(Figure 6a); here, the decrease is 16.8% in the θL state. In the θH state, the choice of sponsored

content is only 0.8% lower than the baseline. Full information decontaminates organic content by

revealing low disclosure, so some substitution away from sponsored to organic content will occur.

However, the choice of sponsorship is 1.8% higher than in the forced high disclosure counterfactual

because θH types are not contaminated by θL types anymore.

8 Conclusion

This paper distinguishes mechanisms behind paid placement in the digital economy to explain

why voluntary disclosure occurs in online livestreaming influencer marketing. Disclosure is used
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as a lever to trigger advertising mechanisms when the influencer or brand wants to signal the

sponsored nature of the content. A stylized model shows that advertising mechanisms like signaling

only occur when reputational costs are low enough for “high type” sponsors. When industry-

specific characteristics ensure that reputational costs are high, then non-disclosure in paid placement

settings may be preferred. Descriptive findings imply that disclosure is not random, supporting

conditions of a separating equilibrium predicted by the stylized model. The structural model builds

upon these findings and concludes that prominent disclosure enforcement leads to better outcomes

for the platform and consumers.

My findings can be extended to more general settings where paid placement occurs. They

support Coase (1979)’s rationale that non-disclosure in radio is efficient because the disclosure

imposes great costs on the listener and the radio DJ. Regulators interested in other traditional

placement settings, such as television, movies, or grocery stores, need to weigh potential costs

that advertising mechanisms might create before implementing policy regarding disclosure. My

analyses can be conducted on other digital media platforms such as YouTube, Instagram, and

Tiktok. Regulators and digital platforms should assess if influencer marketing contains advertising

mechanisms that make disclosure policy efficient.

There exist a few caveats in my analysis. First, the way in which I deal with selection may not

be completely satisfactory. With regards to the structural model, selection into prominent disclo-

sure may come through more avenues than just an unobserved brand alignment state. Powerful,

exogenous variation that shifts influencers’ incentives to disclose is hard to observe in my setting.

Second, incorporating heterogeneity is difficult in a dynamic structural model. The dynamics are

necessary, however, to capture short and long-term tradeoffs of creating and disclosing sponsored

content. Third, competition may factor into the amount of engagement influencers receive. I control

for competition in my descriptive evidence but remain agnostic towards it in my stylized and struc-

tural models. In the livestreaming setting, competition can have a market expansion effect and/or

a market share stealing effect. A richer viewership demand model in conjunction with price data

on influencer payments can help pin down welfare effects for both influencers and viewers. Lastly,

I cannot talk about general equilibrium with all players involved (Brands, influencers, platforms,

consumers), because of data limitations. This is important to consider; as an example, brands

may pay influencers more for sponsorships after a strict disclosure policy is implemented to make

sponsorships more lucrative, mitigating the “sellout” effect from disclosure. A general equilibrium

model that models all the objectives of all stakeholders will require more thought to construct and

more care to estimate precisely and efficiently. I hope to address these shortcomings either in later

revisions of this paper or in future work.

Avenues for future work further dive into the differences in paid placement settings. For exam-

ple, payola may have resulted in lower equilibrium wages for the DJ, as the radio station can afford

to pay the DJ less when they are supplemented by payola. In essence, the existence of payola was

a transfer from record labels to radio stations. This raises the question as to why Twitch does

not extract these revenues from influencers and brands today. There are also pertinent questions
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related to market entry. Slotting fees redistribute risks from grocery stores to brands, making stores

more willing to stock new and unique brands for consumers. Today, it is an outstanding question

as to whether or not influencers decrease the costs of entry for brands. Conversely, one could also

ask whether or not sponsors decrease influencers’ barriers to becoming a “bigger” influencer by

legitimizing their opinions. These are all exciting directions for future research.
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A Appendix

A.1 Additional summary statistics

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Avg. concurrent viewers 3,071.07 7,377.86 2.67 530.72 1,217.74 2,722.72 539,735.20
Stream length of game (hr) 4.57 5.67 0.50 1.92 3.67 6.17 714.75
Followers gained 217.80 1,016.51 −118,777.00 3.00 30.00 140.00 283,152.00
Any ad indicator 0.044 0.205 0 0 0 0 1
Sponsored content indicator 0.018 0.133 0 0 0 0 1
Disclosed ad indicator 0.002 0.049 0 0 0 0 1

Table A.9: Observation level summary statistics

A.2 Pooling equilibrium proof

Proof: I show that no type wants do deviation with a sufficiently large enough penalty for

disclosure. Let Q = (λHH − pH)(θH − θ0) + (1− λHH − pL)(θL − θ0):

c(HD|θ)− c(LD|θ) > Q

> (λHH − pH)(θH − θ0) + (1− λHH − pL)(θL − θ0)

> (λHH − pH)θH + (1− λHH − pL)θL − (1− pL − pH)θ0

(1− pL − pH)θ0 + pLθL + pHθH − c(LD|θ) > λHHθH + (1− λHH)θL − c(HD|θ)

π∗(LD|θ) > π∗(HD|θ).

In some cases, λHH ≈ 0 is a reasonable consumer behavior assumption. In such situations, if

θH ≥ θ0, then as long as c(HD|θ) ≥ c(LD|θ) the pooling equilibrium conditions are satisfied. As

disclosure becomes more of a positive signal about alignment (λHH → 1), the cost of high disclosure

must increase to maintain a pooling equilibrium.
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A.3 Separating Equilibrium

Proof: To low and organic types from mimicking the high type, we need to ensure that reputation

costs are high enough to deter.

Choose M = θH − (1− λLL)θ0 − λLLθL:

c(HD|θ)− c(LD|θ) > M

> θH − (1− λLL)θ0 − λLLθL
(1− λLL)θ0 + λLLθL − c(LD|θ) > θH − c(HD|θ)

π∗(LD|θ) > π∗(HD|θ).

We also need to check that θH types will never pool with low and organic types.

c(HD|θH)− c(LD|θH) ≤M

≤ θH − (1− λLL)θ0 − λLLθL
(1− λLL)θ0 + λLLθL − c(LD|θH) ≤ θH − c(HD|θH)

π∗(LD|θH) ≤ π∗(HD|θH)

Recall Q:

Q = (λHH − pH)(θH − θ0) + (1− λHH − pL)(θL − θ0)

In the separating equilibrium λHH = 1 and pH = 0,

Q = θH − (1− pL)θ0 − pLθL

M = Q if λLL = pL. If λLL > pL, then M < Q. If λLL < pL, M > Q.

It is important to note that when θH ≥ θ0, there will always be a M or Q > 0 that can satisfy

the above condition. When θ0 > θH , that may not exist, and therefore the separating equilibrium

may not necessary exist. However, for θ0 > θH such that θH is sufficiently big enough and λLL is

sufficiently small enough, a separating equilibrium may still exist.
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A.4 Decreasing differences proof

Consider the specification:

cit = β0 + βdHDit + βxxit + νi + τt + εit

where c is the cost of disclosure, and βd is the coefficient on high disclosure. In a separating

equilibrium, θH choosesHD, realizing costs c(HD|θH) and θL chooses LD, realizing costs c(LD|θL).

θH θL
Equilibrium action HD LD

Equilibrium reputation cost c(HD|θH) c(LD|θL)

Interpretation of βOLSd E[c|HD = 1]− E[c|HD = 0]

= E[c(HD|θH)︸ ︷︷ ︸
θh eq. cost

− c(LD|θL)︸ ︷︷ ︸
θl eq. cost

]

Interpretation30 of βIVd E[c(HD)− c(LD)]

Table A.10: Regression coef interpretations in a signaling equilibrium

If we estimate c using OLS, the interpretation of βOLSd is the difference in conditional expec-

tation of c when HD = 1 and when HD = 0. Equilibrium behavior allows me to rewrite this

as:

βOLSd = E[c(HD|θH)︸ ︷︷ ︸
θh eq. cost

− c(LD|θL)︸ ︷︷ ︸
θl eq. cost

] (29)

.

If we estimate c using and instrumental variables regression where we instrument for HDit, the

interpretation of βIVd , under strict assumptions (homogeneous treatment effects, etc. see: Blandhol

et al. (2022)), is the difference in unconditional expectation of c(HD) and c(LD):

βIVd = E[c(HD)− c(LD)] (30)

Using the assumed discrete distribution imposed on θ, we can rewrite βIVd as a weighted sum by

the probability of θ in the population:

βIVd =
pH

pH + pL
E[c(HD|θH)− c(LD|θH)] +

pL
pH + pL

E[c(HD|θL)− c(LD|θL)]

where pL and pH are the probabilities of θL and θH in the population. Finally, we need the

assumption:

Assumption 2 Costs of low disclosure are similar for θH and θL types. That is, c(LD|θH) =
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c(LD|θL)

This allows us to rewrite βIVd as a convex combination of βOLSd and E[c(HD|θL)− c(LD|θL)]:

βIVd =
pH

pH + pL
E[c(HD|θH)− c(LD|θL)]︸ ︷︷ ︸

βOLSd

+
pL

pH + pL
E[c(HD|θL)− c(LD|θL)]

βIVd =
pH

pH + pL
βd +

pL
pH + pL

E[c(HD|θL)− c(LD|θL)] (31)

Two scenarios can happen. First, βIVd > βOLSd

• Then E[c(HD|θL)− c(LD|θL)] > βIVd > βOLSd

which is the condition for decreasing differences. Second, βIVd < βOLSd

• Then E[c(HD|θL)− c(LD|θL)] < βIVd < βOLSd

which is the condition for increasing differences.

The assumption c(LD|θH) = c(LD|θL) is discussed here. In my setting, this assumption should

not be overbearing because low disclosure involves placing the disclosure labeling in a location

where consumers cannot see it before the stream title is cutoff. If a follower reads the full title

discovers the sponsored nature of the stream, they should feel a similar level of disappointment

regardless of the alignment of the sponsor.

However, this assumption may not hold; maybe followers are more willing to let low disclosure

of θH types slide because the sponsor is a good match and the content is more enjoyable. In this

case, c(LD|θH) < c(LD|θL), so decreasing differences is harder to achieve because c(HD|θL) must

be sufficiently larger than c(HD|θH) to offset the difference in c(LD|θH) and c(LD|θL).

Contrarily, followers may feel more upset that a θH type is not disclosing because they are

more likely to be deceived by the high alignment content. In this case, c(LD|θH) > c(LD|θL), so

decreasing differences is easier to achieve because c(HD|θL) does not need to be as large to offset

the difference in c(LD|θH) and c(LD|θL).

It is unclear which situation described above generally holds for my setting. Because of this,

I do not believe that the assumption c(LD|θH) = c(LD|θL) is too restrictive and may be a fine

approximation on average.
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A.5 Viewership beliefs

Here, I show that Equation 19 can be written as a function of the first stage conditional choice

probabilities and the parameters of the model.

There are four terms we need to write in terms of CCPs and parameters:

• Pr(θ̆H |j̄ = HD)

• Pr(θ̆L|j̄ = HD)

• Pr(θ̆H |j̄ ∈ {LD,N})

• Pr(θ̆L|j̄ ∈ {LD,N})

Writing the equation using Bayes’ Rule again, we have:

Pr(θ̆|j̄) =
Pr(j̄|θ̆)Pr(θ̆)

Pr(j̄)

Where θ̆ is the observed sponsor alignment after a viewer clicks into a stream, and j̄ is what

the viewer observes before clicking into a stream. j̄ is different from j in that LD and N are

indistinguishable prior to clicking into a stream. We obtain:

Pr(θ̆H |j̄ = HD) =
Pr(j̄ = HD|θ̆H)Pr(θ̆H)

Pr(j̄ = HD)

=

Pr(HD|θH)Pr(θH)∑
j∈HD,LD Pr(j|θH)Pr(θH) ×

∑
j∈HD,LD Pr(j|θH)Pr(θH)

Pr(HD|θH)Pr(θH) + Pr(HD|θL)Pr(θL)

=
Pr(HD|θH)Pr(θH)

Pr(HD|θH)Pr(θH) + Pr(HD|θL)Pr(θL)

(32)

In the second line, Pr(j̄ = HD|θ̆H) = Pr(HD|θH)Pr(θH)∑
j∈HD,LD Pr(j|θH)Pr(θH) because the probability is conditional

on observing θH after clicking in. The only way for a viewer to observe the true type of a sponsor

is if an influencer chose one of the sponsored content choices, j ∈ {LD,HD}. The denominator

sum is not over N because by design, N cannot be chosen if we observe the type of the sponsor.

We’ve now written the conditional probability as a function of conditional choice probabilities

(omitting state f for notational purposes) and the distribution of types θ, both of which are assumed

to be observed in the first stage of the estimation. Pr(θ̆L|j̄ = HD) follows the exact same argument
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as above. Now I tackle the case when a potential viewer observes LD or N :

Pr(θ̆H |j̄ ∈ {LD,N}) =
Pr(j̄ ∈ {LD,N}|θ̆H)Pr(θ̆H)

Pr(j̄ ∈ {LD,N})

=

Pr(LD|θH)Pr(θH)∑
j∈HD,LD Pr(j|θH)Pr(θH) ×

∑
j∈HD,LD Pr(j|θH)Pr(θH)

Pr(LD|θH)Pr(θH) + Pr(LD|θL)Pr(θL) + Pr(N |θH)Pr(θH) + Pr(N |θL)Pr(θL)

=
Pr(LD|θH)Pr(θH)

Pr(LD|θH)Pr(θH) + Pr(LD|θL)Pr(θL) + Pr(N |θH)Pr(θH) + Pr(N |θL)Pr(θL)

(33)

Again, the terms in the numerator of the second line of the above equation cannot include N

because we are conditioned on observing θ̆H . Pr(θ̆L|j̄ ∈ {LD,N}) follows similarly.
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A.6 Robustness checks - descriptive evidence

Additional robustness checks for the descriptive evidence section (Section 4) are provided here.

A.6.1 High disclosure is immediately at the beginning of title

High disclosure is now defined as the hashtag occurring at the 0th character in the stream

title. I run the OLS and IV regressions as before in the main text using the new definition of high

disclosure. The results are shown in Tables A.11 and A.12.

Full sample Game dev sponsors only

Log ACV IHS New Followers Log ACV IHS New Followers

Game dev sponsor −0.065 −0.653
(0.014) (0.095)

Game dev spon hi. disc. 0.326 0.484 0.137 −0.127
(0.047) (0.164) (0.036) (0.153)

IHS game age −0.017 −0.038 −0.013 −0.047
(0.002) (0.008) (0.003) (0.019)

Same-week streams −0.007 0.069 0.019 0.165
(0.004) (0.014) (0.006) (0.032)

Log Stream Length 0.216 0.964 0.095 0.807
(0.006) (0.022) (0.016) (0.076)

Drops 0.305 0.922 0.122 1.125
(0.023) (0.069) (0.036) (0.150)

Championship 0.173 0.269 0.057 0.222
(0.066) (0.116) (0.191) (0.491)

Giveaway 0.053 0.291 0.086 0.606
(0.020) (0.061) (0.026) (0.132)

Charity 0.033 0.012 0.046 −0.266
(0.024) (0.079) (0.065) (0.327)

Subathon 0.091 0.009 0.287 0.516
(0.035) (0.083) (0.069) (0.297)

First Game −0.232 0.090 −0.274 −0.257
(0.010) (0.028) (0.021) (0.225)

Log total followers 0.735 0.609 0.565 −0.073
(0.076) (0.165) (0.122) (0.685)

Alignment 0.422 1.520 0.071 0.154
(0.030) (0.113) (0.047) (0.266)

Num. obs. 669537 669537 12003 12003
R2 (full model) 0.849 0.580 0.895 0.601

Game Characteristics Y
Influencer FE Y
Quarter-Year FE Y
Game developer FE Y
Other Time FE Y

Table A.11: OLS Regressions; standard errors in parenthesis clustered at influencer level. Influencer characteristics also include
variables about most commonly played game. Game characteristics include genres, themes, and game modes.

The results mirror those in Tables 3 and 4 where high disclosure is defined with a looser cutoff

at fifteen characters.

49



Y: Log. Avg. conc. viewers Y: IHS New Followers Y: High disclosure
OLS IV OLS IV

Game dev spon hi. disc. 0.137 0.196 −0.127 −1.327 -
(0.036) (0.115) (0.153) (0.562) -

Same-week streams 0.019 0.018 0.165 0.179 -
(0.006) (0.006) (0.032) (0.032) -

Inst: % other disclose - - - - 0.27
- - - - (0.03)

R2 0.895 - 0.607 - 0.44
nobs 12003 12003 12003 12003 12003

Influencer Characteristics Y
Game Characteristics Y
Stream Characteristics Y
Influencer FE Y
Quarter-Year FE Y
Game developer FE Y
Other Time FE Y

First stage partial F: - - - - 92.5

Table A.12: IV Regressions; standard errors in parenthesis clustered at influencer level. Influencer characteristics include
number of followers and most frequently played game. Game characteristics include game age genres, themes, and game modes.
Stream characteristics include stream length, drops, tournament, championship, giveaway, charity, subathon, and first game of
the day

A.7 Exogenous unobserved state simplification

In Arcidiacono and Miller (2011), the first thing we must update in the EM algorithm is the

probability of n being in unobserved state θ at time t, q
(m+1)
nθt

q
(m+1)
nθt =

L
(m)
n (θnt = θ)

L
(m)
n

(34)

where Ln = L(dn, xn|xn1; γ, π, p) is the joint likelihood of observing the choice sequence dn =

(dn1, . . . , dnT ) and observed states xn = (xn1, . . . , xnT ):

Ln =
S∑

θ1=1

S∑
θ2=1

. . .
S∑

θT=1

[
π(θ1|xn1)L1(dn1, xn2|xn1, θ1; γ, π, p)

×
T∏
t=2

(
π(θt|θt−1)Lt(dnt, xn,t+1|xnt, θt; γ, π, p)

)] (35)

where Lt is the likelihood of observing dnt, xn,t+1 in period t.

If the unobserved state θ could i.) change every period and ii.) was not exogenous, I would

have to sum over all possible sequences of θ for T periods, leading to a sum over |θ|T sequences. A

sufficiently large T makes this sum infeasible, so I must make a simplifying assumption

Assumption 3 π(θt|θt−1) = π(θ1|xn1) = π(θ) for all t
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This assumption drastically simplifies (35):

Ln = L(dn, xn|xn1; γ, π, p)

=
S∑

θ1=1

S∑
θ2=1

. . .
S∑

θT=1

[
π(θ)L1(dn1, xn2|xn1, θ1; γ, π, p)

×
T∏
t=2

(
π(θ)Lt(dnt, xn,t+1|xnt, θt; γ, π, p)

)]
= L(dn, xn|xn1; γ, π, p)

=
T∏
t=1

S∑
θt

(
π(θt)Lt(dnt, xn,t+1|xnt, θt; γ, π, p)

)]
(36)

One can demonstrate pulling the sum into the product through a basic induction argument. This

expression is a calculation over T ×|θ| numbers (note S = |θ|). Moreover, (34) simplifies to a simple

ratio:

q
(m+1)
nθt =

L
(m)
n (θnt = θ)

L
(m)
n

= π(θt = θ)Lt(dnt, xn,t+1|xnt, θt; γ, π, p)

∏
τ 6=t
∑S

θτ

(
π(θτ )Lτ (dnτ , xn,τ+1|xnτ , θτ ; γ, π, p)

)
∏T
τ=1

∑S
θτ

(
π(θτ )Lτ (dnτ , xn,τ+1|xnτ , θτ ; γ, π, p)

)
=
π(θt = θ)Lt(dnt, xn,t+1|xnt, θt; γ, π, p)∑
θt
π(θt)Lt(dnt, xn,t+1|xnt, θt; γ, π, p)

(37)
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